This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to express well-orderability without bound or distinct variables. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isnum2 | |- ( A e. dom card <-> E. x e. On x ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 | |- card : { y | E. x e. On x ~~ y } --> On |
|
| 2 | 1 | fdmi | |- dom card = { y | E. x e. On x ~~ y } |
| 3 | 2 | eleq2i | |- ( A e. dom card <-> A e. { y | E. x e. On x ~~ y } ) |
| 4 | relen | |- Rel ~~ |
|
| 5 | 4 | brrelex2i | |- ( x ~~ A -> A e. _V ) |
| 6 | 5 | rexlimivw | |- ( E. x e. On x ~~ A -> A e. _V ) |
| 7 | breq2 | |- ( y = A -> ( x ~~ y <-> x ~~ A ) ) |
|
| 8 | 7 | rexbidv | |- ( y = A -> ( E. x e. On x ~~ y <-> E. x e. On x ~~ A ) ) |
| 9 | 6 8 | elab3 | |- ( A e. { y | E. x e. On x ~~ y } <-> E. x e. On x ~~ A ) |
| 10 | 3 9 | bitri | |- ( A e. dom card <-> E. x e. On x ~~ A ) |