This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dom2d.1 | |- ( ph -> ( x e. A -> C e. B ) ) |
|
| dom2d.2 | |- ( ph -> ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) ) ) |
||
| dom3d.3 | |- ( ph -> A e. V ) |
||
| dom3d.4 | |- ( ph -> B e. W ) |
||
| Assertion | dom3d | |- ( ph -> A ~<_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom2d.1 | |- ( ph -> ( x e. A -> C e. B ) ) |
|
| 2 | dom2d.2 | |- ( ph -> ( ( x e. A /\ y e. A ) -> ( C = D <-> x = y ) ) ) |
|
| 3 | dom3d.3 | |- ( ph -> A e. V ) |
|
| 4 | dom3d.4 | |- ( ph -> B e. W ) |
|
| 5 | 1 2 | dom2lem | |- ( ph -> ( x e. A |-> C ) : A -1-1-> B ) |
| 6 | f1f | |- ( ( x e. A |-> C ) : A -1-1-> B -> ( x e. A |-> C ) : A --> B ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( x e. A |-> C ) : A --> B ) |
| 8 | fex2 | |- ( ( ( x e. A |-> C ) : A --> B /\ A e. V /\ B e. W ) -> ( x e. A |-> C ) e. _V ) |
|
| 9 | 7 3 4 8 | syl3anc | |- ( ph -> ( x e. A |-> C ) e. _V ) |
| 10 | f1eq1 | |- ( z = ( x e. A |-> C ) -> ( z : A -1-1-> B <-> ( x e. A |-> C ) : A -1-1-> B ) ) |
|
| 11 | 9 5 10 | spcedv | |- ( ph -> E. z z : A -1-1-> B ) |
| 12 | brdomg | |- ( B e. W -> ( A ~<_ B <-> E. z z : A -1-1-> B ) ) |
|
| 13 | 4 12 | syl | |- ( ph -> ( A ~<_ B <-> E. z z : A -1-1-> B ) ) |
| 14 | 11 13 | mpbird | |- ( ph -> A ~<_ B ) |