This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddge0 | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A +e B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | 1 | a1i | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 e. RR* ) |
| 3 | simplr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> B e. RR* ) |
|
| 4 | xaddcl | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) e. RR* ) |
|
| 5 | 4 | adantr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> ( A +e B ) e. RR* ) |
| 6 | simprr | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ B ) |
|
| 7 | xaddlid | |- ( B e. RR* -> ( 0 +e B ) = B ) |
|
| 8 | 3 7 | syl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> ( 0 +e B ) = B ) |
| 9 | simpll | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> A e. RR* ) |
|
| 10 | simprl | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ A ) |
|
| 11 | xleadd1a | |- ( ( ( 0 e. RR* /\ A e. RR* /\ B e. RR* ) /\ 0 <_ A ) -> ( 0 +e B ) <_ ( A +e B ) ) |
|
| 12 | 2 9 3 10 11 | syl31anc | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> ( 0 +e B ) <_ ( A +e B ) ) |
| 13 | 8 12 | eqbrtrrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> B <_ ( A +e B ) ) |
| 14 | 2 3 5 6 13 | xrletrd | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A +e B ) ) |