This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for wrd2f1tovbij . (Contributed by Alexander van der Vekens, 27-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlktovf1o.d | |- D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
|
| wwlktovf1o.r | |- R = { n e. V | { P , n } e. X } |
||
| wwlktovf1o.f | |- F = ( t e. D |-> ( t ` 1 ) ) |
||
| Assertion | wwlktovfo | |- ( P e. V -> F : D -onto-> R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlktovf1o.d | |- D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
|
| 2 | wwlktovf1o.r | |- R = { n e. V | { P , n } e. X } |
|
| 3 | wwlktovf1o.f | |- F = ( t e. D |-> ( t ` 1 ) ) |
|
| 4 | 1 2 3 | wwlktovf | |- F : D --> R |
| 5 | 4 | a1i | |- ( P e. V -> F : D --> R ) |
| 6 | preq2 | |- ( n = p -> { P , n } = { P , p } ) |
|
| 7 | 6 | eleq1d | |- ( n = p -> ( { P , n } e. X <-> { P , p } e. X ) ) |
| 8 | 7 2 | elrab2 | |- ( p e. R <-> ( p e. V /\ { P , p } e. X ) ) |
| 9 | simpl | |- ( ( p e. V /\ { P , p } e. X ) -> p e. V ) |
|
| 10 | 9 | anim2i | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( P e. V /\ p e. V ) ) |
| 11 | eqidd | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> { <. 0 , P >. , <. 1 , p >. } = { <. 0 , P >. , <. 1 , p >. } ) |
|
| 12 | wrdlen2i | |- ( ( P e. V /\ p e. V ) -> ( { <. 0 , P >. , <. 1 , p >. } = { <. 0 , P >. , <. 1 , p >. } -> ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) ) |
|
| 13 | 10 11 12 | sylc | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) |
| 14 | prex | |- { <. 0 , P >. , <. 1 , p >. } e. _V |
|
| 15 | 14 | a1i | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> { <. 0 , P >. , <. 1 , p >. } e. _V ) |
| 16 | eleq1 | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { <. 0 , P >. , <. 1 , p >. } e. Word V <-> u e. Word V ) ) |
|
| 17 | 16 | biimpd | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { <. 0 , P >. , <. 1 , p >. } e. Word V -> u e. Word V ) ) |
| 18 | 17 | adantr | |- ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( { <. 0 , P >. , <. 1 , p >. } e. Word V -> u e. Word V ) ) |
| 19 | 18 | com12 | |- ( { <. 0 , P >. , <. 1 , p >. } e. Word V -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> u e. Word V ) ) |
| 20 | 19 | adantr | |- ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> u e. Word V ) ) |
| 21 | 20 | adantr | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> u e. Word V ) ) |
| 22 | 21 | impcom | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> u e. Word V ) |
| 23 | fveqeq2 | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 <-> ( # ` u ) = 2 ) ) |
|
| 24 | 23 | biimpd | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 -> ( # ` u ) = 2 ) ) |
| 25 | 24 | adantr | |- ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 -> ( # ` u ) = 2 ) ) |
| 26 | 25 | com12 | |- ( ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( # ` u ) = 2 ) ) |
| 27 | 26 | adantl | |- ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( # ` u ) = 2 ) ) |
| 28 | 27 | adantr | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( # ` u ) = 2 ) ) |
| 29 | 28 | impcom | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> ( # ` u ) = 2 ) |
| 30 | fveq1 | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = ( u ` 0 ) ) |
|
| 31 | 30 | eqeq1d | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P <-> ( u ` 0 ) = P ) ) |
| 32 | 31 | biimpd | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P -> ( u ` 0 ) = P ) ) |
| 33 | 32 | adantr | |- ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P -> ( u ` 0 ) = P ) ) |
| 34 | 33 | com12 | |- ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( u ` 0 ) = P ) ) |
| 35 | 34 | adantr | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( u ` 0 ) = P ) ) |
| 36 | 35 | adantl | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( u ` 0 ) = P ) ) |
| 37 | 36 | impcom | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> ( u ` 0 ) = P ) |
| 38 | fveq1 | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = ( u ` 1 ) ) |
|
| 39 | 38 | eqeq1d | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p <-> ( u ` 1 ) = p ) ) |
| 40 | 31 39 | anbi12d | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) <-> ( ( u ` 0 ) = P /\ ( u ` 1 ) = p ) ) ) |
| 41 | preq12 | |- ( ( ( u ` 0 ) = P /\ ( u ` 1 ) = p ) -> { ( u ` 0 ) , ( u ` 1 ) } = { P , p } ) |
|
| 42 | 41 | eqcomd | |- ( ( ( u ` 0 ) = P /\ ( u ` 1 ) = p ) -> { P , p } = { ( u ` 0 ) , ( u ` 1 ) } ) |
| 43 | 42 | eleq1d | |- ( ( ( u ` 0 ) = P /\ ( u ` 1 ) = p ) -> ( { P , p } e. X <-> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 44 | 43 | biimpd | |- ( ( ( u ` 0 ) = P /\ ( u ` 1 ) = p ) -> ( { P , p } e. X -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 45 | 40 44 | biimtrdi | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) -> ( { P , p } e. X -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 46 | 45 | com12 | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) -> ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { P , p } e. X -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 47 | 46 | adantl | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( { <. 0 , P >. , <. 1 , p >. } = u -> ( { P , p } e. X -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 48 | 47 | com13 | |- ( { P , p } e. X -> ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 49 | 48 | ad2antll | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 50 | 49 | impcom | |- ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 51 | 50 | imp | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> { ( u ` 0 ) , ( u ` 1 ) } e. X ) |
| 52 | 29 37 51 | 3jca | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 53 | eqcom | |- ( ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p <-> p = ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) ) |
|
| 54 | 38 | eqeq2d | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( p = ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) <-> p = ( u ` 1 ) ) ) |
| 55 | 54 | biimpd | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( p = ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) -> p = ( u ` 1 ) ) ) |
| 56 | 53 55 | biimtrid | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p -> p = ( u ` 1 ) ) ) |
| 57 | 56 | com12 | |- ( ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p -> ( { <. 0 , P >. , <. 1 , p >. } = u -> p = ( u ` 1 ) ) ) |
| 58 | 57 | ad2antll | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( { <. 0 , P >. , <. 1 , p >. } = u -> p = ( u ` 1 ) ) ) |
| 59 | 58 | com12 | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> p = ( u ` 1 ) ) ) |
| 60 | 59 | adantr | |- ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> p = ( u ` 1 ) ) ) |
| 61 | 60 | imp | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> p = ( u ` 1 ) ) |
| 62 | 22 52 61 | jca31 | |- ( ( ( { <. 0 , P >. , <. 1 , p >. } = u /\ ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) ) -> ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) |
| 63 | 62 | exp31 | |- ( { <. 0 , P >. , <. 1 , p >. } = u -> ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) ) ) |
| 64 | 63 | eqcoms | |- ( u = { <. 0 , P >. , <. 1 , p >. } -> ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) ) ) |
| 65 | 64 | impcom | |- ( ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) /\ u = { <. 0 , P >. , <. 1 , p >. } ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) ) |
| 66 | 15 65 | spcimedv | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> ( ( ( { <. 0 , P >. , <. 1 , p >. } e. Word V /\ ( # ` { <. 0 , P >. , <. 1 , p >. } ) = 2 ) /\ ( ( { <. 0 , P >. , <. 1 , p >. } ` 0 ) = P /\ ( { <. 0 , P >. , <. 1 , p >. } ` 1 ) = p ) ) -> E. u ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) ) |
| 67 | 13 66 | mpd | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> E. u ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) |
| 68 | fveqeq2 | |- ( w = u -> ( ( # ` w ) = 2 <-> ( # ` u ) = 2 ) ) |
|
| 69 | fveq1 | |- ( w = u -> ( w ` 0 ) = ( u ` 0 ) ) |
|
| 70 | 69 | eqeq1d | |- ( w = u -> ( ( w ` 0 ) = P <-> ( u ` 0 ) = P ) ) |
| 71 | fveq1 | |- ( w = u -> ( w ` 1 ) = ( u ` 1 ) ) |
|
| 72 | 69 71 | preq12d | |- ( w = u -> { ( w ` 0 ) , ( w ` 1 ) } = { ( u ` 0 ) , ( u ` 1 ) } ) |
| 73 | 72 | eleq1d | |- ( w = u -> ( { ( w ` 0 ) , ( w ` 1 ) } e. X <-> { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) |
| 74 | 68 70 73 | 3anbi123d | |- ( w = u -> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) <-> ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 75 | 74 | elrab | |- ( u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } <-> ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) ) |
| 76 | 75 | anbi1i | |- ( ( u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } /\ p = ( u ` 1 ) ) <-> ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) |
| 77 | 76 | exbii | |- ( E. u ( u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } /\ p = ( u ` 1 ) ) <-> E. u ( ( u e. Word V /\ ( ( # ` u ) = 2 /\ ( u ` 0 ) = P /\ { ( u ` 0 ) , ( u ` 1 ) } e. X ) ) /\ p = ( u ` 1 ) ) ) |
| 78 | 67 77 | sylibr | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> E. u ( u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } /\ p = ( u ` 1 ) ) ) |
| 79 | df-rex | |- ( E. u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } p = ( u ` 1 ) <-> E. u ( u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } /\ p = ( u ` 1 ) ) ) |
|
| 80 | 78 79 | sylibr | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> E. u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } p = ( u ` 1 ) ) |
| 81 | 1 | rexeqi | |- ( E. u e. D p = ( u ` 1 ) <-> E. u e. { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } p = ( u ` 1 ) ) |
| 82 | 80 81 | sylibr | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> E. u e. D p = ( u ` 1 ) ) |
| 83 | fveq1 | |- ( t = u -> ( t ` 1 ) = ( u ` 1 ) ) |
|
| 84 | fvex | |- ( u ` 1 ) e. _V |
|
| 85 | 83 3 84 | fvmpt | |- ( u e. D -> ( F ` u ) = ( u ` 1 ) ) |
| 86 | 85 | eqeq2d | |- ( u e. D -> ( p = ( F ` u ) <-> p = ( u ` 1 ) ) ) |
| 87 | 86 | rexbiia | |- ( E. u e. D p = ( F ` u ) <-> E. u e. D p = ( u ` 1 ) ) |
| 88 | 82 87 | sylibr | |- ( ( P e. V /\ ( p e. V /\ { P , p } e. X ) ) -> E. u e. D p = ( F ` u ) ) |
| 89 | 8 88 | sylan2b | |- ( ( P e. V /\ p e. R ) -> E. u e. D p = ( F ` u ) ) |
| 90 | 89 | ralrimiva | |- ( P e. V -> A. p e. R E. u e. D p = ( F ` u ) ) |
| 91 | dffo3 | |- ( F : D -onto-> R <-> ( F : D --> R /\ A. p e. R E. u e. D p = ( F ` u ) ) ) |
|
| 92 | 5 90 91 | sylanbrc | |- ( P e. V -> F : D -onto-> R ) |