This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbols of a word W representing a walk of a fixed length N are vertices. (Contributed by AV, 16-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wwlknvtx | |- ( W e. ( N WWalksN G ) -> A. i e. ( 0 ... N ) ( W ` i ) e. ( Vtx ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlknbp1 | |- ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |
|
| 2 | simp2 | |- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> W e. Word ( Vtx ` G ) ) |
|
| 3 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 4 | fzval3 | |- ( N e. ZZ -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) |
|
| 5 | 3 4 | syl | |- ( N e. NN0 -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) |
| 7 | 6 | eleq2d | |- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( i e. ( 0 ... N ) <-> i e. ( 0 ..^ ( N + 1 ) ) ) ) |
| 8 | 7 | biimpa | |- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ i e. ( 0 ... N ) ) -> i e. ( 0 ..^ ( N + 1 ) ) ) |
| 9 | oveq2 | |- ( ( # ` W ) = ( N + 1 ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ ( N + 1 ) ) ) |
|
| 10 | 9 | eleq2d | |- ( ( # ` W ) = ( N + 1 ) -> ( i e. ( 0 ..^ ( # ` W ) ) <-> i e. ( 0 ..^ ( N + 1 ) ) ) ) |
| 11 | 10 | 3ad2ant3 | |- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( i e. ( 0 ..^ ( # ` W ) ) <-> i e. ( 0 ..^ ( N + 1 ) ) ) ) |
| 12 | 11 | adantr | |- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ i e. ( 0 ... N ) ) -> ( i e. ( 0 ..^ ( # ` W ) ) <-> i e. ( 0 ..^ ( N + 1 ) ) ) ) |
| 13 | 8 12 | mpbird | |- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ i e. ( 0 ... N ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) |
| 14 | wrdsymbcl | |- ( ( W e. Word ( Vtx ` G ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) e. ( Vtx ` G ) ) |
|
| 15 | 2 13 14 | syl2an2r | |- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ i e. ( 0 ... N ) ) -> ( W ` i ) e. ( Vtx ` G ) ) |
| 16 | 15 | ralrimiva | |- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> A. i e. ( 0 ... N ) ( W ` i ) e. ( Vtx ` G ) ) |
| 17 | 1 16 | syl | |- ( W e. ( N WWalksN G ) -> A. i e. ( 0 ... N ) ( W ` i ) e. ( Vtx ` G ) ) |