This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a word W represents a walk of a fixed length N , then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wwlknllvtx.v | |- V = ( Vtx ` G ) |
|
| Assertion | wwlknllvtx | |- ( W e. ( N WWalksN G ) -> ( ( W ` 0 ) e. V /\ ( W ` N ) e. V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlknllvtx.v | |- V = ( Vtx ` G ) |
|
| 2 | wwlknbp1 | |- ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |
|
| 3 | wwlknvtx | |- ( W e. ( N WWalksN G ) -> A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) ) |
|
| 4 | 0elfz | |- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
|
| 5 | fveq2 | |- ( x = 0 -> ( W ` x ) = ( W ` 0 ) ) |
|
| 6 | 5 | eleq1d | |- ( x = 0 -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` 0 ) e. ( Vtx ` G ) ) ) |
| 7 | 6 | adantl | |- ( ( N e. NN0 /\ x = 0 ) -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` 0 ) e. ( Vtx ` G ) ) ) |
| 8 | 4 7 | rspcdv | |- ( N e. NN0 -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( W ` 0 ) e. ( Vtx ` G ) ) ) |
| 9 | nn0fz0 | |- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
|
| 10 | 9 | biimpi | |- ( N e. NN0 -> N e. ( 0 ... N ) ) |
| 11 | fveq2 | |- ( x = N -> ( W ` x ) = ( W ` N ) ) |
|
| 12 | 11 | eleq1d | |- ( x = N -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` N ) e. ( Vtx ` G ) ) ) |
| 13 | 12 | adantl | |- ( ( N e. NN0 /\ x = N ) -> ( ( W ` x ) e. ( Vtx ` G ) <-> ( W ` N ) e. ( Vtx ` G ) ) ) |
| 14 | 10 13 | rspcdv | |- ( N e. NN0 -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( W ` N ) e. ( Vtx ` G ) ) ) |
| 15 | 8 14 | jcad | |- ( N e. NN0 -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( A. x e. ( 0 ... N ) ( W ` x ) e. ( Vtx ` G ) -> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) ) |
| 17 | 2 3 16 | sylc | |- ( W e. ( N WWalksN G ) -> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) |
| 18 | 1 | eleq2i | |- ( ( W ` 0 ) e. V <-> ( W ` 0 ) e. ( Vtx ` G ) ) |
| 19 | 1 | eleq2i | |- ( ( W ` N ) e. V <-> ( W ` N ) e. ( Vtx ` G ) ) |
| 20 | 18 19 | anbi12i | |- ( ( ( W ` 0 ) e. V /\ ( W ` N ) e. V ) <-> ( ( W ` 0 ) e. ( Vtx ` G ) /\ ( W ` N ) e. ( Vtx ` G ) ) ) |
| 21 | 17 20 | sylibr | |- ( W e. ( N WWalksN G ) -> ( ( W ` 0 ) e. V /\ ( W ` N ) e. V ) ) |