This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbols of a word W representing a walk of a fixed length N are vertices. (Contributed by AV, 16-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wwlknvtx | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑖 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlknbp1 | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) | |
| 2 | simp2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 3 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 4 | fzval3 | ⊢ ( 𝑁 ∈ ℤ → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 7 | 6 | eleq2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑖 ∈ ( 0 ... 𝑁 ) ↔ 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 8 | 7 | biimpa | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 9 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) | |
| 10 | 9 | eleq2d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 13 | 8 12 | mpbird | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 14 | wrdsymbcl | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ( Vtx ‘ 𝐺 ) ) | |
| 15 | 2 13 14 | syl2an2r | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 ‘ 𝑖 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 16 | 15 | ralrimiva | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑖 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 17 | 1 16 | syl | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ∀ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝑊 ‘ 𝑖 ) ∈ ( Vtx ‘ 𝐺 ) ) |