This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Other basic properties of a walk of a fixed length as word. (Contributed by AV, 8-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wwlknbp1 | |- ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | 1 | wwlknbp | |- ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word ( Vtx ` G ) ) ) |
| 3 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 4 | 1 3 | wwlknp | |- ( W e. ( N WWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 5 | simpl | |- ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> N e. NN0 ) |
|
| 6 | simpr1 | |- ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> W e. Word ( Vtx ` G ) ) |
|
| 7 | simpr2 | |- ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( # ` W ) = ( N + 1 ) ) |
|
| 8 | 5 6 7 | 3jca | |- ( ( N e. NN0 /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |
| 9 | 8 | ex | |- ( N e. NN0 -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) |
| 10 | 9 | 3ad2ant2 | |- ( ( G e. _V /\ N e. NN0 /\ W e. Word ( Vtx ` G ) ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) |
| 11 | 2 4 10 | sylc | |- ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |