This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wun0.1 | |- ( ph -> U e. WUni ) |
|
| Assertion | wunr1om | |- ( ph -> ( R1 " _om ) C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | |- ( ph -> U e. WUni ) |
|
| 2 | fveq2 | |- ( x = (/) -> ( R1 ` x ) = ( R1 ` (/) ) ) |
|
| 3 | 2 | eleq1d | |- ( x = (/) -> ( ( R1 ` x ) e. U <-> ( R1 ` (/) ) e. U ) ) |
| 4 | fveq2 | |- ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) |
|
| 5 | 4 | eleq1d | |- ( x = y -> ( ( R1 ` x ) e. U <-> ( R1 ` y ) e. U ) ) |
| 6 | fveq2 | |- ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) |
|
| 7 | 6 | eleq1d | |- ( x = suc y -> ( ( R1 ` x ) e. U <-> ( R1 ` suc y ) e. U ) ) |
| 8 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 9 | 1 | wun0 | |- ( ph -> (/) e. U ) |
| 10 | 8 9 | eqeltrid | |- ( ph -> ( R1 ` (/) ) e. U ) |
| 11 | 1 | adantr | |- ( ( ph /\ ( R1 ` y ) e. U ) -> U e. WUni ) |
| 12 | simpr | |- ( ( ph /\ ( R1 ` y ) e. U ) -> ( R1 ` y ) e. U ) |
|
| 13 | 11 12 | wunpw | |- ( ( ph /\ ( R1 ` y ) e. U ) -> ~P ( R1 ` y ) e. U ) |
| 14 | nnon | |- ( y e. _om -> y e. On ) |
|
| 15 | r1suc | |- ( y e. On -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
|
| 16 | 14 15 | syl | |- ( y e. _om -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
| 17 | 16 | eleq1d | |- ( y e. _om -> ( ( R1 ` suc y ) e. U <-> ~P ( R1 ` y ) e. U ) ) |
| 18 | 13 17 | imbitrrid | |- ( y e. _om -> ( ( ph /\ ( R1 ` y ) e. U ) -> ( R1 ` suc y ) e. U ) ) |
| 19 | 18 | expd | |- ( y e. _om -> ( ph -> ( ( R1 ` y ) e. U -> ( R1 ` suc y ) e. U ) ) ) |
| 20 | 3 5 7 10 19 | finds2 | |- ( x e. _om -> ( ph -> ( R1 ` x ) e. U ) ) |
| 21 | eleq1 | |- ( ( R1 ` x ) = y -> ( ( R1 ` x ) e. U <-> y e. U ) ) |
|
| 22 | 21 | imbi2d | |- ( ( R1 ` x ) = y -> ( ( ph -> ( R1 ` x ) e. U ) <-> ( ph -> y e. U ) ) ) |
| 23 | 20 22 | syl5ibcom | |- ( x e. _om -> ( ( R1 ` x ) = y -> ( ph -> y e. U ) ) ) |
| 24 | 23 | rexlimiv | |- ( E. x e. _om ( R1 ` x ) = y -> ( ph -> y e. U ) ) |
| 25 | r1fnon | |- R1 Fn On |
|
| 26 | fnfun | |- ( R1 Fn On -> Fun R1 ) |
|
| 27 | 25 26 | ax-mp | |- Fun R1 |
| 28 | fvelima | |- ( ( Fun R1 /\ y e. ( R1 " _om ) ) -> E. x e. _om ( R1 ` x ) = y ) |
|
| 29 | 27 28 | mpan | |- ( y e. ( R1 " _om ) -> E. x e. _om ( R1 ` x ) = y ) |
| 30 | 24 29 | syl11 | |- ( ph -> ( y e. ( R1 " _om ) -> y e. U ) ) |
| 31 | 30 | ssrdv | |- ( ph -> ( R1 " _om ) C_ U ) |