This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 23-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iedginwlk.i | |- I = ( iEdg ` G ) |
|
| Assertion | iedginwlk | |- ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` X ) ) e. ran I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iedginwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | simp1 | |- ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> Fun I ) |
|
| 3 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 4 | 3 | 3ad2ant2 | |- ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> F e. Word dom I ) |
| 5 | simp3 | |- ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> X e. ( 0 ..^ ( # ` F ) ) ) |
|
| 6 | wrdsymbcl | |- ( ( F e. Word dom I /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` X ) e. dom I ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` X ) e. dom I ) |
| 8 | fvelrn | |- ( ( Fun I /\ ( F ` X ) e. dom I ) -> ( I ` ( F ` X ) ) e. ran I ) |
|
| 9 | 2 7 8 | syl2anc | |- ( ( Fun I /\ F ( Walks ` G ) P /\ X e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` X ) ) e. ran I ) |