This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for wlkd . (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkd.p | |- ( ph -> P e. Word _V ) |
|
| wlkd.f | |- ( ph -> F e. Word _V ) |
||
| wlkd.l | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
||
| wlkd.e | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
||
| Assertion | wlkdlem3 | |- ( ph -> F e. Word dom I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkd.p | |- ( ph -> P e. Word _V ) |
|
| 2 | wlkd.f | |- ( ph -> F e. Word _V ) |
|
| 3 | wlkd.l | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
|
| 4 | wlkd.e | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
|
| 5 | 1 2 3 4 | wlkdlem2 | |- ( ph -> ( ( ( # ` F ) e. NN -> ( P ` ( # ` F ) ) e. ( I ` ( F ` ( ( # ` F ) - 1 ) ) ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 6 | elfvdm | |- ( ( P ` k ) e. ( I ` ( F ` k ) ) -> ( F ` k ) e. dom I ) |
|
| 7 | 6 | ralimi | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) e. ( I ` ( F ` k ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( F ` k ) e. dom I ) |
| 8 | 5 7 | simpl2im | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( F ` k ) e. dom I ) |
| 9 | iswrdsymb | |- ( ( F e. Word _V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( F ` k ) e. dom I ) -> F e. Word dom I ) |
|
| 10 | 2 8 9 | syl2anc | |- ( ph -> F e. Word dom I ) |