This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iswrdsymb | |- ( ( W e. Word _V /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) e. V ) -> W e. Word V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfn | |- ( W e. Word _V -> W Fn ( 0 ..^ ( # ` W ) ) ) |
|
| 2 | 1 | anim1i | |- ( ( W e. Word _V /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) e. V ) -> ( W Fn ( 0 ..^ ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) e. V ) ) |
| 3 | ffnfv | |- ( W : ( 0 ..^ ( # ` W ) ) --> V <-> ( W Fn ( 0 ..^ ( # ` W ) ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) e. V ) ) |
|
| 4 | 2 3 | sylibr | |- ( ( W e. Word _V /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) e. V ) -> W : ( 0 ..^ ( # ` W ) ) --> V ) |
| 5 | iswrdi | |- ( W : ( 0 ..^ ( # ` W ) ) --> V -> W e. Word V ) |
|
| 6 | 4 5 | syl | |- ( ( W e. Word _V /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) e. V ) -> W e. Word V ) |