This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for wlkd . (Contributed by Alexander van der Vekens, 1-Feb-2018) (Revised by AV, 23-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkd.p | |- ( ph -> P e. Word _V ) |
|
| wlkd.f | |- ( ph -> F e. Word _V ) |
||
| wlkd.l | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
||
| wlkd.e | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
||
| wlkd.n | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
||
| Assertion | wlkdlem4 | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkd.p | |- ( ph -> P e. Word _V ) |
|
| 2 | wlkd.f | |- ( ph -> F e. Word _V ) |
|
| 3 | wlkd.l | |- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
|
| 4 | wlkd.e | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
|
| 5 | wlkd.n | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
|
| 6 | r19.26 | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) <-> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
|
| 7 | df-ne | |- ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> -. ( P ` k ) = ( P ` ( k + 1 ) ) ) |
|
| 8 | ifpfal | |- ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
|
| 9 | 7 8 | sylbi | |- ( ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 10 | 9 | biimparc | |- ( ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 11 | 10 | ralimi | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 12 | 6 11 | sylbir | |- ( ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 13 | 4 5 12 | syl2anc | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |