This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for wlkd . (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkd.p | ⊢ ( 𝜑 → 𝑃 ∈ Word V ) | |
| wlkd.f | ⊢ ( 𝜑 → 𝐹 ∈ Word V ) | ||
| wlkd.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) | ||
| wlkd.e | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | wlkdlem3 | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkd.p | ⊢ ( 𝜑 → 𝑃 ∈ Word V ) | |
| 2 | wlkd.f | ⊢ ( 𝜑 → 𝐹 ∈ Word V ) | |
| 3 | wlkd.l | ⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) | |
| 4 | wlkd.e | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 5 | 1 2 3 4 | wlkdlem2 | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 6 | elfvdm | ⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) | |
| 7 | 6 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
| 8 | 5 7 | simpl2im | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
| 9 | iswrdsymb | ⊢ ( ( 𝐹 ∈ Word V ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) → 𝐹 ∈ Word dom 𝐼 ) | |
| 10 | 2 8 9 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |