This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: On a class well-ordered by membership, the membership predicate is transitive. (Contributed by NM, 22-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wetrep | |- ( ( _E We A /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x e. y /\ y e. z ) -> x e. z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weso | |- ( _E We A -> _E Or A ) |
|
| 2 | sotr | |- ( ( _E Or A /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x _E y /\ y _E z ) -> x _E z ) ) |
|
| 3 | 1 2 | sylan | |- ( ( _E We A /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x _E y /\ y _E z ) -> x _E z ) ) |
| 4 | epel | |- ( x _E y <-> x e. y ) |
|
| 5 | epel | |- ( y _E z <-> y e. z ) |
|
| 6 | 4 5 | anbi12i | |- ( ( x _E y /\ y _E z ) <-> ( x e. y /\ y e. z ) ) |
| 7 | epel | |- ( x _E z <-> x e. z ) |
|
| 8 | 3 6 7 | 3imtr3g | |- ( ( _E We A /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x e. y /\ y e. z ) -> x e. z ) ) |