This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 24-Jun-2015) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fopwdom | |- ( ( F e. V /\ F : A -onto-> B ) -> ~P B ~<_ ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn | |- ( `' F " a ) C_ ran `' F |
|
| 2 | dfdm4 | |- dom F = ran `' F |
|
| 3 | fof | |- ( F : A -onto-> B -> F : A --> B ) |
|
| 4 | 3 | fdmd | |- ( F : A -onto-> B -> dom F = A ) |
| 5 | 2 4 | eqtr3id | |- ( F : A -onto-> B -> ran `' F = A ) |
| 6 | 1 5 | sseqtrid | |- ( F : A -onto-> B -> ( `' F " a ) C_ A ) |
| 7 | 6 | adantl | |- ( ( F e. V /\ F : A -onto-> B ) -> ( `' F " a ) C_ A ) |
| 8 | cnvexg | |- ( F e. V -> `' F e. _V ) |
|
| 9 | 8 | adantr | |- ( ( F e. V /\ F : A -onto-> B ) -> `' F e. _V ) |
| 10 | imaexg | |- ( `' F e. _V -> ( `' F " a ) e. _V ) |
|
| 11 | elpwg | |- ( ( `' F " a ) e. _V -> ( ( `' F " a ) e. ~P A <-> ( `' F " a ) C_ A ) ) |
|
| 12 | 9 10 11 | 3syl | |- ( ( F e. V /\ F : A -onto-> B ) -> ( ( `' F " a ) e. ~P A <-> ( `' F " a ) C_ A ) ) |
| 13 | 7 12 | mpbird | |- ( ( F e. V /\ F : A -onto-> B ) -> ( `' F " a ) e. ~P A ) |
| 14 | 13 | a1d | |- ( ( F e. V /\ F : A -onto-> B ) -> ( a e. ~P B -> ( `' F " a ) e. ~P A ) ) |
| 15 | imaeq2 | |- ( ( `' F " a ) = ( `' F " b ) -> ( F " ( `' F " a ) ) = ( F " ( `' F " b ) ) ) |
|
| 16 | 15 | adantl | |- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> ( F " ( `' F " a ) ) = ( F " ( `' F " b ) ) ) |
| 17 | simpllr | |- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> F : A -onto-> B ) |
|
| 18 | simplrl | |- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> a e. ~P B ) |
|
| 19 | 18 | elpwid | |- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> a C_ B ) |
| 20 | foimacnv | |- ( ( F : A -onto-> B /\ a C_ B ) -> ( F " ( `' F " a ) ) = a ) |
|
| 21 | 17 19 20 | syl2anc | |- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> ( F " ( `' F " a ) ) = a ) |
| 22 | simplrr | |- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> b e. ~P B ) |
|
| 23 | 22 | elpwid | |- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> b C_ B ) |
| 24 | foimacnv | |- ( ( F : A -onto-> B /\ b C_ B ) -> ( F " ( `' F " b ) ) = b ) |
|
| 25 | 17 23 24 | syl2anc | |- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> ( F " ( `' F " b ) ) = b ) |
| 26 | 16 21 25 | 3eqtr3d | |- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> a = b ) |
| 27 | 26 | ex | |- ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) -> ( ( `' F " a ) = ( `' F " b ) -> a = b ) ) |
| 28 | imaeq2 | |- ( a = b -> ( `' F " a ) = ( `' F " b ) ) |
|
| 29 | 27 28 | impbid1 | |- ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) -> ( ( `' F " a ) = ( `' F " b ) <-> a = b ) ) |
| 30 | 29 | ex | |- ( ( F e. V /\ F : A -onto-> B ) -> ( ( a e. ~P B /\ b e. ~P B ) -> ( ( `' F " a ) = ( `' F " b ) <-> a = b ) ) ) |
| 31 | rnexg | |- ( F e. V -> ran F e. _V ) |
|
| 32 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 33 | 32 | eleq1d | |- ( F : A -onto-> B -> ( ran F e. _V <-> B e. _V ) ) |
| 34 | 31 33 | syl5ibcom | |- ( F e. V -> ( F : A -onto-> B -> B e. _V ) ) |
| 35 | 34 | imp | |- ( ( F e. V /\ F : A -onto-> B ) -> B e. _V ) |
| 36 | 35 | pwexd | |- ( ( F e. V /\ F : A -onto-> B ) -> ~P B e. _V ) |
| 37 | dmfex | |- ( ( F e. V /\ F : A --> B ) -> A e. _V ) |
|
| 38 | 3 37 | sylan2 | |- ( ( F e. V /\ F : A -onto-> B ) -> A e. _V ) |
| 39 | 38 | pwexd | |- ( ( F e. V /\ F : A -onto-> B ) -> ~P A e. _V ) |
| 40 | 14 30 36 39 | dom3d | |- ( ( F e. V /\ F : A -onto-> B ) -> ~P B ~<_ ~P A ) |