This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a vertex in a hypergraph has degree 0, the vertex is not adjacent to another vertex via an edge. (Contributed by Alexander van der Vekens, 8-Dec-2017) (Revised by AV, 15-Dec-2020) (Proof shortened by AV, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
||
| vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | vtxduhgr0nedg | |- ( ( G e. UHGraph /\ U e. V /\ ( D ` U ) = 0 ) -> -. E. v e. V { U , v } e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
|
| 3 | vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
|
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | 1 4 3 | vtxd0nedgb | |- ( U e. V -> ( ( D ` U ) = 0 <-> -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) |
| 6 | 5 | adantl | |- ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) |
| 7 | 2 | eleq2i | |- ( { U , v } e. E <-> { U , v } e. ( Edg ` G ) ) |
| 8 | 4 | uhgredgiedgb | |- ( G e. UHGraph -> ( { U , v } e. ( Edg ` G ) <-> E. i e. dom ( iEdg ` G ) { U , v } = ( ( iEdg ` G ) ` i ) ) ) |
| 9 | 7 8 | bitrid | |- ( G e. UHGraph -> ( { U , v } e. E <-> E. i e. dom ( iEdg ` G ) { U , v } = ( ( iEdg ` G ) ` i ) ) ) |
| 10 | 9 | adantr | |- ( ( G e. UHGraph /\ U e. V ) -> ( { U , v } e. E <-> E. i e. dom ( iEdg ` G ) { U , v } = ( ( iEdg ` G ) ` i ) ) ) |
| 11 | prid1g | |- ( U e. V -> U e. { U , v } ) |
|
| 12 | eleq2 | |- ( { U , v } = ( ( iEdg ` G ) ` i ) -> ( U e. { U , v } <-> U e. ( ( iEdg ` G ) ` i ) ) ) |
|
| 13 | 11 12 | syl5ibcom | |- ( U e. V -> ( { U , v } = ( ( iEdg ` G ) ` i ) -> U e. ( ( iEdg ` G ) ` i ) ) ) |
| 14 | 13 | adantl | |- ( ( G e. UHGraph /\ U e. V ) -> ( { U , v } = ( ( iEdg ` G ) ` i ) -> U e. ( ( iEdg ` G ) ` i ) ) ) |
| 15 | 14 | reximdv | |- ( ( G e. UHGraph /\ U e. V ) -> ( E. i e. dom ( iEdg ` G ) { U , v } = ( ( iEdg ` G ) ` i ) -> E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) |
| 16 | 10 15 | sylbid | |- ( ( G e. UHGraph /\ U e. V ) -> ( { U , v } e. E -> E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) |
| 17 | 16 | rexlimdvw | |- ( ( G e. UHGraph /\ U e. V ) -> ( E. v e. V { U , v } e. E -> E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) |
| 18 | 17 | con3d | |- ( ( G e. UHGraph /\ U e. V ) -> ( -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) -> -. E. v e. V { U , v } e. E ) ) |
| 19 | 6 18 | sylbid | |- ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 -> -. E. v e. V { U , v } e. E ) ) |
| 20 | 19 | 3impia | |- ( ( G e. UHGraph /\ U e. V /\ ( D ` U ) = 0 ) -> -. E. v e. V { U , v } e. E ) |