This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of the degrees of all vertices of a finite pseudograph of finite size is even. See equation (2) in section I.1 in Bollobas p. 4, where it is also called thehandshaking lemma. (Contributed by AV, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | finsumvtxdgeven.v | |- V = ( Vtx ` G ) |
|
| finsumvtxdgeven.i | |- I = ( iEdg ` G ) |
||
| finsumvtxdgeven.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | finsumvtxdgeven | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || sum_ v e. V ( D ` v ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finsumvtxdgeven.v | |- V = ( Vtx ` G ) |
|
| 2 | finsumvtxdgeven.i | |- I = ( iEdg ` G ) |
|
| 3 | finsumvtxdgeven.d | |- D = ( VtxDeg ` G ) |
|
| 4 | hashcl | |- ( I e. Fin -> ( # ` I ) e. NN0 ) |
|
| 5 | 4 | 3ad2ant3 | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( # ` I ) e. NN0 ) |
| 6 | 5 | nn0zd | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( # ` I ) e. ZZ ) |
| 7 | eqidd | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 x. ( # ` I ) ) = ( 2 x. ( # ` I ) ) ) |
|
| 8 | 2teven | |- ( ( ( # ` I ) e. ZZ /\ ( 2 x. ( # ` I ) ) = ( 2 x. ( # ` I ) ) ) -> 2 || ( 2 x. ( # ` I ) ) ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || ( 2 x. ( # ` I ) ) ) |
| 10 | 1 2 3 | finsumvtxdg2size | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) |
| 11 | 9 10 | breqtrrd | |- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || sum_ v e. V ( D ` v ) ) |