This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex in an empty hypergraph is zero, because there are no edges. Analogue of vtxdg0e . (Contributed by AV, 15-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxduhgr0e.v | |- V = ( Vtx ` G ) |
|
| vtxduhgr0e.e | |- E = ( Edg ` G ) |
||
| Assertion | vtxduhgr0e | |- ( ( G e. UHGraph /\ U e. V /\ E = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxduhgr0e.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxduhgr0e.e | |- E = ( Edg ` G ) |
|
| 3 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 4 | 3 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 5 | 3 2 | edg0iedg0 | |- ( Fun ( iEdg ` G ) -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 6 | 4 5 | syl | |- ( G e. UHGraph -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 7 | 6 | adantr | |- ( ( G e. UHGraph /\ U e. V ) -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 8 | 1 3 | vtxdg0e | |- ( ( U e. V /\ ( iEdg ` G ) = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |
| 9 | 8 | ex | |- ( U e. V -> ( ( iEdg ` G ) = (/) -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |
| 10 | 9 | adantl | |- ( ( G e. UHGraph /\ U e. V ) -> ( ( iEdg ` G ) = (/) -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |
| 11 | 7 10 | sylbid | |- ( ( G e. UHGraph /\ U e. V ) -> ( E = (/) -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |
| 12 | 11 | 3impia | |- ( ( G e. UHGraph /\ U e. V /\ E = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |