This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem form of vtoclgf . The reverse implication is proven in ceqsal1t . See ceqsalt for a version with x and A disjoint. (Contributed by NM, 17-Feb-2013) (Revised by Mario Carneiro, 12-Oct-2016) (Proof shortened by JJ, 11-Aug-2021) Avoid ax-13 . (Revised by GG, 6-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vtoclgft | |- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) /\ A e. V ) -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
| 2 | 1 | imim2i | |- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph -> ps ) ) ) |
| 3 | 2 | alimi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ph -> ps ) ) ) |
| 4 | spcimgft | |- ( ( ( F/_ x A /\ F/ x ps ) /\ A. x ( x = A -> ( ph -> ps ) ) ) -> ( A e. V -> ( A. x ph -> ps ) ) ) |
|
| 5 | 3 4 | sylan2 | |- ( ( ( F/_ x A /\ F/ x ps ) /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. V -> ( A. x ph -> ps ) ) ) |
| 6 | 5 | com23 | |- ( ( ( F/_ x A /\ F/ x ps ) /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A. x ph -> ( A e. V -> ps ) ) ) |
| 7 | 6 | impr | |- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) ) -> ( A e. V -> ps ) ) |
| 8 | 7 | 3impia | |- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) /\ A e. V ) -> ps ) |