This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem version of ceqsalg . (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 10-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceqsalt | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
| 2 | 1 | imim3i | |- ( ( x = A -> ( ph <-> ps ) ) -> ( ( x = A -> ph ) -> ( x = A -> ps ) ) ) |
| 3 | 2 | al2imi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> A. x ( x = A -> ps ) ) ) |
| 4 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 5 | 19.23t | |- ( F/ x ps -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) ) |
|
| 6 | 5 | biimpd | |- ( F/ x ps -> ( A. x ( x = A -> ps ) -> ( E. x x = A -> ps ) ) ) |
| 7 | 4 6 | syl7 | |- ( F/ x ps -> ( A. x ( x = A -> ps ) -> ( A e. V -> ps ) ) ) |
| 8 | 3 7 | sylan9r | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A. x ( x = A -> ph ) -> ( A e. V -> ps ) ) ) |
| 9 | 8 | com23 | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. V -> ( A. x ( x = A -> ph ) -> ps ) ) ) |
| 10 | 9 | 3impia | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) -> ps ) ) |
| 11 | ceqsal1t | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
|
| 12 | 11 | 3adant3 | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
| 13 | 10 12 | impbid | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. V ) -> ( A. x ( x = A -> ph ) <-> ps ) ) |