This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem form of spcimgf . (Contributed by Wolf Lammen, 28-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spcimgft | |- ( ( ( F/_ x A /\ F/ x ps ) /\ A. x ( x = A -> ( ph -> ps ) ) ) -> ( A e. V -> ( A. x ph -> ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv | |- ( A e. V -> E. y y = A ) |
|
| 2 | cbvexeqsetf | |- ( F/_ x A -> ( E. x x = A <-> E. y y = A ) ) |
|
| 3 | 1 2 | imbitrrid | |- ( F/_ x A -> ( A e. V -> E. x x = A ) ) |
| 4 | pm2.04 | |- ( ( x = A -> ( ph -> ps ) ) -> ( ph -> ( x = A -> ps ) ) ) |
|
| 5 | 4 | al2imi | |- ( A. x ( x = A -> ( ph -> ps ) ) -> ( A. x ph -> A. x ( x = A -> ps ) ) ) |
| 6 | 19.23t | |- ( F/ x ps -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) ) |
|
| 7 | 6 | biimpd | |- ( F/ x ps -> ( A. x ( x = A -> ps ) -> ( E. x x = A -> ps ) ) ) |
| 8 | 5 7 | sylan9r | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph -> ps ) ) ) -> ( A. x ph -> ( E. x x = A -> ps ) ) ) |
| 9 | 8 | com23 | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph -> ps ) ) ) -> ( E. x x = A -> ( A. x ph -> ps ) ) ) |
| 10 | 3 9 | sylan9 | |- ( ( F/_ x A /\ ( F/ x ps /\ A. x ( x = A -> ( ph -> ps ) ) ) ) -> ( A e. V -> ( A. x ph -> ps ) ) ) |
| 11 | 10 | anassrs | |- ( ( ( F/_ x A /\ F/ x ps ) /\ A. x ( x = A -> ( ph -> ps ) ) ) -> ( A e. V -> ( A. x ph -> ps ) ) ) |