This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi | |- -. ( ( ( ph <-> ps ) -> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) -> -. ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ph <-> ps ) ) ) |
|
| 2 | simplim | |- ( -. ( ( ( ph <-> ps ) -> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) -> -. ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ph <-> ps ) ) ) -> ( ( ph <-> ps ) -> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( ph <-> ps ) -> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) |
| 4 | simplim | |- ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ph -> ps ) ) |
|
| 5 | 3 4 | syl | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |