This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtoclgft
Metamath Proof Explorer
Description: Closed theorem form of vtoclgf . The reverse implication is proven in
ceqsal1t . See ceqsalt for a version with x and A disjoint.
(Contributed by NM , 17-Feb-2013) (Revised by Mario Carneiro , 12-Oct-2016) (Proof shortened by JJ , 11-Aug-2021) Avoid ax-13 .
(Revised by GG , 6-Oct-2023)
Ref
Expression
Assertion
vtoclgft
⊢ Ⅎ _ x A ∧ Ⅎ x ψ ∧ ∀ x x = A → φ ↔ ψ ∧ ∀ x φ ∧ A ∈ V → ψ
Proof
Step
Hyp
Ref
Expression
1
biimp
⊢ φ ↔ ψ → φ → ψ
2
1
imim2i
⊢ x = A → φ ↔ ψ → x = A → φ → ψ
3
2
alimi
⊢ ∀ x x = A → φ ↔ ψ → ∀ x x = A → φ → ψ
4
spcimgft
⊢ Ⅎ _ x A ∧ Ⅎ x ψ ∧ ∀ x x = A → φ → ψ → A ∈ V → ∀ x φ → ψ
5
3 4
sylan2
⊢ Ⅎ _ x A ∧ Ⅎ x ψ ∧ ∀ x x = A → φ ↔ ψ → A ∈ V → ∀ x φ → ψ
6
5
com23
⊢ Ⅎ _ x A ∧ Ⅎ x ψ ∧ ∀ x x = A → φ ↔ ψ → ∀ x φ → A ∈ V → ψ
7
6
impr
⊢ Ⅎ _ x A ∧ Ⅎ x ψ ∧ ∀ x x = A → φ ↔ ψ ∧ ∀ x φ → A ∈ V → ψ
8
7
3impia
⊢ Ⅎ _ x A ∧ Ⅎ x ψ ∧ ∀ x x = A → φ ↔ ψ ∧ ∀ x φ ∧ A ∈ V → ψ