This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjeq2 | |- ( A. x e. A B = C -> ( Disj_ x e. A B <-> Disj_ x e. A C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 | |- ( B = C -> C C_ B ) |
|
| 2 | 1 | ralimi | |- ( A. x e. A B = C -> A. x e. A C C_ B ) |
| 3 | disjss2 | |- ( A. x e. A C C_ B -> ( Disj_ x e. A B -> Disj_ x e. A C ) ) |
|
| 4 | 2 3 | syl | |- ( A. x e. A B = C -> ( Disj_ x e. A B -> Disj_ x e. A C ) ) |
| 5 | eqimss | |- ( B = C -> B C_ C ) |
|
| 6 | 5 | ralimi | |- ( A. x e. A B = C -> A. x e. A B C_ C ) |
| 7 | disjss2 | |- ( A. x e. A B C_ C -> ( Disj_ x e. A C -> Disj_ x e. A B ) ) |
|
| 8 | 6 7 | syl | |- ( A. x e. A B = C -> ( Disj_ x e. A C -> Disj_ x e. A B ) ) |
| 9 | 4 8 | impbid | |- ( A. x e. A B = C -> ( Disj_ x e. A B <-> Disj_ x e. A C ) ) |