This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for volsup . (Contributed by Mario Carneiro, 4-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volsuplem | |- ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ ( A e. NN /\ B e. ( ZZ>= ` A ) ) ) -> ( F ` A ) C_ ( F ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 2 | 1 | sseq2d | |- ( x = A -> ( ( F ` A ) C_ ( F ` x ) <-> ( F ` A ) C_ ( F ` A ) ) ) |
| 3 | 2 | imbi2d | |- ( x = A -> ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` x ) ) <-> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` A ) ) ) ) |
| 4 | fveq2 | |- ( x = k -> ( F ` x ) = ( F ` k ) ) |
|
| 5 | 4 | sseq2d | |- ( x = k -> ( ( F ` A ) C_ ( F ` x ) <-> ( F ` A ) C_ ( F ` k ) ) ) |
| 6 | 5 | imbi2d | |- ( x = k -> ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` x ) ) <-> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` k ) ) ) ) |
| 7 | fveq2 | |- ( x = ( k + 1 ) -> ( F ` x ) = ( F ` ( k + 1 ) ) ) |
|
| 8 | 7 | sseq2d | |- ( x = ( k + 1 ) -> ( ( F ` A ) C_ ( F ` x ) <-> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) |
| 9 | 8 | imbi2d | |- ( x = ( k + 1 ) -> ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` x ) ) <-> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) ) |
| 10 | fveq2 | |- ( x = B -> ( F ` x ) = ( F ` B ) ) |
|
| 11 | 10 | sseq2d | |- ( x = B -> ( ( F ` A ) C_ ( F ` x ) <-> ( F ` A ) C_ ( F ` B ) ) ) |
| 12 | 11 | imbi2d | |- ( x = B -> ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` x ) ) <-> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` B ) ) ) ) |
| 13 | ssid | |- ( F ` A ) C_ ( F ` A ) |
|
| 14 | 13 | 2a1i | |- ( A e. ZZ -> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` A ) ) ) |
| 15 | eluznn | |- ( ( A e. NN /\ k e. ( ZZ>= ` A ) ) -> k e. NN ) |
|
| 16 | fveq2 | |- ( n = k -> ( F ` n ) = ( F ` k ) ) |
|
| 17 | fvoveq1 | |- ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) |
|
| 18 | 16 17 | sseq12d | |- ( n = k -> ( ( F ` n ) C_ ( F ` ( n + 1 ) ) <-> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) ) |
| 19 | 18 | rspccva | |- ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ k e. NN ) -> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) |
| 20 | 15 19 | sylan2 | |- ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ ( A e. NN /\ k e. ( ZZ>= ` A ) ) ) -> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) |
| 21 | 20 | anassrs | |- ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) |
| 22 | sstr2 | |- ( ( F ` A ) C_ ( F ` k ) -> ( ( F ` k ) C_ ( F ` ( k + 1 ) ) -> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) |
|
| 23 | 21 22 | syl5com | |- ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) /\ k e. ( ZZ>= ` A ) ) -> ( ( F ` A ) C_ ( F ` k ) -> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) |
| 24 | 23 | expcom | |- ( k e. ( ZZ>= ` A ) -> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( ( F ` A ) C_ ( F ` k ) -> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) ) |
| 25 | 24 | a2d | |- ( k e. ( ZZ>= ` A ) -> ( ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` k ) ) -> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` ( k + 1 ) ) ) ) ) |
| 26 | 3 6 9 12 14 25 | uzind4 | |- ( B e. ( ZZ>= ` A ) -> ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( F ` A ) C_ ( F ` B ) ) ) |
| 27 | 26 | com12 | |- ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ A e. NN ) -> ( B e. ( ZZ>= ` A ) -> ( F ` A ) C_ ( F ` B ) ) ) |
| 28 | 27 | impr | |- ( ( A. n e. NN ( F ` n ) C_ ( F ` ( n + 1 ) ) /\ ( A e. NN /\ B e. ( ZZ>= ` A ) ) ) -> ( F ` A ) C_ ( F ` B ) ) |