This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the von Mangoldt function, which gives the logarithm of the prime at a prime power, and is zero elsewhere, see definition in ApostolNT p. 32. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-vma | |- Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cvma | |- Lam |
|
| 1 | vx | |- x |
|
| 2 | cn | |- NN |
|
| 3 | vp | |- p |
|
| 4 | cprime | |- Prime |
|
| 5 | 3 | cv | |- p |
| 6 | cdvds | |- || |
|
| 7 | 1 | cv | |- x |
| 8 | 5 7 6 | wbr | |- p || x |
| 9 | 8 3 4 | crab | |- { p e. Prime | p || x } |
| 10 | vs | |- s |
|
| 11 | chash | |- # |
|
| 12 | 10 | cv | |- s |
| 13 | 12 11 | cfv | |- ( # ` s ) |
| 14 | c1 | |- 1 |
|
| 15 | 13 14 | wceq | |- ( # ` s ) = 1 |
| 16 | clog | |- log |
|
| 17 | 12 | cuni | |- U. s |
| 18 | 17 16 | cfv | |- ( log ` U. s ) |
| 19 | cc0 | |- 0 |
|
| 20 | 15 18 19 | cif | |- if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) |
| 21 | 10 9 20 | csb | |- [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) |
| 22 | 1 2 21 | cmpt | |- ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |
| 23 | 0 22 | wceq | |- Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |