This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indirect strong induction on the cardinality of a finite or numerable set. (Contributed by Stefan O'Rear, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indcardi.a | |- ( ph -> A e. V ) |
|
| indcardi.b | |- ( ph -> T e. dom card ) |
||
| indcardi.c | |- ( ( ph /\ R ~<_ T /\ A. y ( S ~< R -> ch ) ) -> ps ) |
||
| indcardi.d | |- ( x = y -> ( ps <-> ch ) ) |
||
| indcardi.e | |- ( x = A -> ( ps <-> th ) ) |
||
| indcardi.f | |- ( x = y -> R = S ) |
||
| indcardi.g | |- ( x = A -> R = T ) |
||
| Assertion | indcardi | |- ( ph -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indcardi.a | |- ( ph -> A e. V ) |
|
| 2 | indcardi.b | |- ( ph -> T e. dom card ) |
|
| 3 | indcardi.c | |- ( ( ph /\ R ~<_ T /\ A. y ( S ~< R -> ch ) ) -> ps ) |
|
| 4 | indcardi.d | |- ( x = y -> ( ps <-> ch ) ) |
|
| 5 | indcardi.e | |- ( x = A -> ( ps <-> th ) ) |
|
| 6 | indcardi.f | |- ( x = y -> R = S ) |
|
| 7 | indcardi.g | |- ( x = A -> R = T ) |
|
| 8 | domrefg | |- ( T e. dom card -> T ~<_ T ) |
|
| 9 | 2 8 | syl | |- ( ph -> T ~<_ T ) |
| 10 | cardon | |- ( card ` T ) e. On |
|
| 11 | 10 | a1i | |- ( ph -> ( card ` T ) e. On ) |
| 12 | simpl1 | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) /\ R ~<_ T ) -> ph ) |
|
| 13 | simpr | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) /\ R ~<_ T ) -> R ~<_ T ) |
|
| 14 | simpr | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> S ~< R ) |
|
| 15 | simpl1 | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> ph ) |
|
| 16 | 15 2 | syl | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> T e. dom card ) |
| 17 | sdomdom | |- ( S ~< R -> S ~<_ R ) |
|
| 18 | simpl3 | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> R ~<_ T ) |
|
| 19 | domtr | |- ( ( S ~<_ R /\ R ~<_ T ) -> S ~<_ T ) |
|
| 20 | 17 18 19 | syl2an2 | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> S ~<_ T ) |
| 21 | numdom | |- ( ( T e. dom card /\ S ~<_ T ) -> S e. dom card ) |
|
| 22 | 16 20 21 | syl2anc | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> S e. dom card ) |
| 23 | numdom | |- ( ( T e. dom card /\ R ~<_ T ) -> R e. dom card ) |
|
| 24 | 16 18 23 | syl2anc | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> R e. dom card ) |
| 25 | cardsdom2 | |- ( ( S e. dom card /\ R e. dom card ) -> ( ( card ` S ) e. ( card ` R ) <-> S ~< R ) ) |
|
| 26 | 22 24 25 | syl2anc | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> ( ( card ` S ) e. ( card ` R ) <-> S ~< R ) ) |
| 27 | 14 26 | mpbird | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> ( card ` S ) e. ( card ` R ) ) |
| 28 | id | |- ( ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) |
|
| 29 | 28 | com3l | |- ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ( ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ch ) ) ) |
| 30 | 27 20 29 | sylc | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) /\ S ~< R ) -> ( ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ch ) ) |
| 31 | 30 | ex | |- ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) -> ( S ~< R -> ( ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ch ) ) ) |
| 32 | 31 | com23 | |- ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) -> ( ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ( S ~< R -> ch ) ) ) |
| 33 | 32 | alimdv | |- ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ R ~<_ T ) -> ( A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> A. y ( S ~< R -> ch ) ) ) |
| 34 | 33 | 3exp | |- ( ph -> ( ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) -> ( R ~<_ T -> ( A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> A. y ( S ~< R -> ch ) ) ) ) ) |
| 35 | 34 | com34 | |- ( ph -> ( ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) -> ( A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) -> ( R ~<_ T -> A. y ( S ~< R -> ch ) ) ) ) ) |
| 36 | 35 | 3imp1 | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) /\ R ~<_ T ) -> A. y ( S ~< R -> ch ) ) |
| 37 | 12 13 36 3 | syl3anc | |- ( ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) /\ R ~<_ T ) -> ps ) |
| 38 | 37 | ex | |- ( ( ph /\ ( ( card ` R ) e. On /\ ( card ` R ) C_ ( card ` T ) ) /\ A. y ( ( card ` S ) e. ( card ` R ) -> ( S ~<_ T -> ch ) ) ) -> ( R ~<_ T -> ps ) ) |
| 39 | 6 | breq1d | |- ( x = y -> ( R ~<_ T <-> S ~<_ T ) ) |
| 40 | 39 4 | imbi12d | |- ( x = y -> ( ( R ~<_ T -> ps ) <-> ( S ~<_ T -> ch ) ) ) |
| 41 | 7 | breq1d | |- ( x = A -> ( R ~<_ T <-> T ~<_ T ) ) |
| 42 | 41 5 | imbi12d | |- ( x = A -> ( ( R ~<_ T -> ps ) <-> ( T ~<_ T -> th ) ) ) |
| 43 | 6 | fveq2d | |- ( x = y -> ( card ` R ) = ( card ` S ) ) |
| 44 | 7 | fveq2d | |- ( x = A -> ( card ` R ) = ( card ` T ) ) |
| 45 | 1 11 38 40 42 43 44 | tfisi | |- ( ph -> ( T ~<_ T -> th ) ) |
| 46 | 9 45 | mpd | |- ( ph -> th ) |