This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover the base of an uniform structure U . U. ran UnifOn is to UnifOn what Top is to TopOn . (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ustbas.1 | |- X = dom U. U |
|
| Assertion | ustbas | |- ( U e. U. ran UnifOn <-> U e. ( UnifOn ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustbas.1 | |- X = dom U. U |
|
| 2 | ustfn | |- UnifOn Fn _V |
|
| 3 | fnfun | |- ( UnifOn Fn _V -> Fun UnifOn ) |
|
| 4 | elunirn | |- ( Fun UnifOn -> ( U e. U. ran UnifOn <-> E. x e. dom UnifOn U e. ( UnifOn ` x ) ) ) |
|
| 5 | 2 3 4 | mp2b | |- ( U e. U. ran UnifOn <-> E. x e. dom UnifOn U e. ( UnifOn ` x ) ) |
| 6 | ustbas2 | |- ( U e. ( UnifOn ` x ) -> x = dom U. U ) |
|
| 7 | 6 1 | eqtr4di | |- ( U e. ( UnifOn ` x ) -> x = X ) |
| 8 | 7 | fveq2d | |- ( U e. ( UnifOn ` x ) -> ( UnifOn ` x ) = ( UnifOn ` X ) ) |
| 9 | 8 | eleq2d | |- ( U e. ( UnifOn ` x ) -> ( U e. ( UnifOn ` x ) <-> U e. ( UnifOn ` X ) ) ) |
| 10 | 9 | ibi | |- ( U e. ( UnifOn ` x ) -> U e. ( UnifOn ` X ) ) |
| 11 | 10 | rexlimivw | |- ( E. x e. dom UnifOn U e. ( UnifOn ` x ) -> U e. ( UnifOn ` X ) ) |
| 12 | 5 11 | sylbi | |- ( U e. U. ran UnifOn -> U e. ( UnifOn ` X ) ) |
| 13 | elfvunirn | |- ( U e. ( UnifOn ` X ) -> U e. U. ran UnifOn ) |
|
| 14 | 12 13 | impbii | |- ( U e. U. ran UnifOn <-> U e. ( UnifOn ` X ) ) |