This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover the base of an uniform structure U . U. ran UnifOn is to UnifOn what Top is to TopOn . (Contributed by Thierry Arnoux, 16-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ustbas.1 | ⊢ 𝑋 = dom ∪ 𝑈 | |
| Assertion | ustbas | ⊢ ( 𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustbas.1 | ⊢ 𝑋 = dom ∪ 𝑈 | |
| 2 | ustfn | ⊢ UnifOn Fn V | |
| 3 | fnfun | ⊢ ( UnifOn Fn V → Fun UnifOn ) | |
| 4 | elunirn | ⊢ ( Fun UnifOn → ( 𝑈 ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∈ dom UnifOn 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ) ) | |
| 5 | 2 3 4 | mp2b | ⊢ ( 𝑈 ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∈ dom UnifOn 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ) |
| 6 | ustbas2 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → 𝑥 = dom ∪ 𝑈 ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → 𝑥 = 𝑋 ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → ( UnifOn ‘ 𝑥 ) = ( UnifOn ‘ 𝑋 ) ) |
| 9 | 8 | eleq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) ↔ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ) |
| 10 | 9 | ibi | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 11 | 10 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ dom UnifOn 𝑈 ∈ ( UnifOn ‘ 𝑥 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 12 | 5 11 | sylbi | ⊢ ( 𝑈 ∈ ∪ ran UnifOn → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 13 | elfvunirn | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ ∪ ran UnifOn ) | |
| 14 | 12 13 | impbii | ⊢ ( 𝑈 ∈ ∪ ran UnifOn ↔ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |