This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustfn | |- UnifOn Fn _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw | |- ( u e. ~P ~P ( x X. x ) <-> u C_ ~P ( x X. x ) ) |
|
| 2 | 1 | abbii | |- { u | u e. ~P ~P ( x X. x ) } = { u | u C_ ~P ( x X. x ) } |
| 3 | abid2 | |- { u | u e. ~P ~P ( x X. x ) } = ~P ~P ( x X. x ) |
|
| 4 | vex | |- x e. _V |
|
| 5 | 4 4 | xpex | |- ( x X. x ) e. _V |
| 6 | 5 | pwex | |- ~P ( x X. x ) e. _V |
| 7 | 6 | pwex | |- ~P ~P ( x X. x ) e. _V |
| 8 | 3 7 | eqeltri | |- { u | u e. ~P ~P ( x X. x ) } e. _V |
| 9 | 2 8 | eqeltrri | |- { u | u C_ ~P ( x X. x ) } e. _V |
| 10 | simp1 | |- ( ( u C_ ~P ( x X. x ) /\ ( x X. x ) e. u /\ A. v e. u ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) -> u C_ ~P ( x X. x ) ) |
|
| 11 | 10 | ss2abi | |- { u | ( u C_ ~P ( x X. x ) /\ ( x X. x ) e. u /\ A. v e. u ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) } C_ { u | u C_ ~P ( x X. x ) } |
| 12 | 9 11 | ssexi | |- { u | ( u C_ ~P ( x X. x ) /\ ( x X. x ) e. u /\ A. v e. u ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) } e. _V |
| 13 | df-ust | |- UnifOn = ( x e. _V |-> { u | ( u C_ ~P ( x X. x ) /\ ( x X. x ) e. u /\ A. v e. u ( A. w e. ~P ( x X. x ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` x ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) } ) |
|
| 14 | 12 13 | fnmpti | |- UnifOn Fn _V |