This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ussval.1 | |- B = ( Base ` W ) |
|
| ussval.2 | |- U = ( UnifSet ` W ) |
||
| Assertion | ussid | |- ( ( B X. B ) = U. U -> U = ( UnifSt ` W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ussval.1 | |- B = ( Base ` W ) |
|
| 2 | ussval.2 | |- U = ( UnifSet ` W ) |
|
| 3 | oveq2 | |- ( ( B X. B ) = U. U -> ( U |`t ( B X. B ) ) = ( U |`t U. U ) ) |
|
| 4 | id | |- ( ( B X. B ) = U. U -> ( B X. B ) = U. U ) |
|
| 5 | 1 | fvexi | |- B e. _V |
| 6 | 5 5 | xpex | |- ( B X. B ) e. _V |
| 7 | 4 6 | eqeltrrdi | |- ( ( B X. B ) = U. U -> U. U e. _V ) |
| 8 | uniexb | |- ( U e. _V <-> U. U e. _V ) |
|
| 9 | 7 8 | sylibr | |- ( ( B X. B ) = U. U -> U e. _V ) |
| 10 | eqid | |- U. U = U. U |
|
| 11 | 10 | restid | |- ( U e. _V -> ( U |`t U. U ) = U ) |
| 12 | 9 11 | syl | |- ( ( B X. B ) = U. U -> ( U |`t U. U ) = U ) |
| 13 | 3 12 | eqtr2d | |- ( ( B X. B ) = U. U -> U = ( U |`t ( B X. B ) ) ) |
| 14 | 1 2 | ussval | |- ( U |`t ( B X. B ) ) = ( UnifSt ` W ) |
| 15 | 13 14 | eqtrdi | |- ( ( B X. B ) = U. U -> U = ( UnifSt ` W ) ) |