This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ussval.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| ussval.2 | ⊢ 𝑈 = ( UnifSet ‘ 𝑊 ) | ||
| Assertion | ussid | ⊢ ( ( 𝐵 × 𝐵 ) = ∪ 𝑈 → 𝑈 = ( UnifSt ‘ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ussval.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | ussval.2 | ⊢ 𝑈 = ( UnifSet ‘ 𝑊 ) | |
| 3 | oveq2 | ⊢ ( ( 𝐵 × 𝐵 ) = ∪ 𝑈 → ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( 𝑈 ↾t ∪ 𝑈 ) ) | |
| 4 | id | ⊢ ( ( 𝐵 × 𝐵 ) = ∪ 𝑈 → ( 𝐵 × 𝐵 ) = ∪ 𝑈 ) | |
| 5 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 6 | 5 5 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 7 | 4 6 | eqeltrrdi | ⊢ ( ( 𝐵 × 𝐵 ) = ∪ 𝑈 → ∪ 𝑈 ∈ V ) |
| 8 | uniexb | ⊢ ( 𝑈 ∈ V ↔ ∪ 𝑈 ∈ V ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝐵 × 𝐵 ) = ∪ 𝑈 → 𝑈 ∈ V ) |
| 10 | eqid | ⊢ ∪ 𝑈 = ∪ 𝑈 | |
| 11 | 10 | restid | ⊢ ( 𝑈 ∈ V → ( 𝑈 ↾t ∪ 𝑈 ) = 𝑈 ) |
| 12 | 9 11 | syl | ⊢ ( ( 𝐵 × 𝐵 ) = ∪ 𝑈 → ( 𝑈 ↾t ∪ 𝑈 ) = 𝑈 ) |
| 13 | 3 12 | eqtr2d | ⊢ ( ( 𝐵 × 𝐵 ) = ∪ 𝑈 → 𝑈 = ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) ) |
| 14 | 1 2 | ussval | ⊢ ( 𝑈 ↾t ( 𝐵 × 𝐵 ) ) = ( UnifSt ‘ 𝑊 ) |
| 15 | 13 14 | eqtrdi | ⊢ ( ( 𝐵 × 𝐵 ) = ∪ 𝑈 → 𝑈 = ( UnifSt ‘ 𝑊 ) ) |