This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In case the base of the UnifSt element of the uniform space is the base of its element structure, then UnifSt does not restrict it further. (Contributed by Thierry Arnoux, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ussval.1 | ||
| ussval.2 | |||
| Assertion | ussid |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ussval.1 | ||
| 2 | ussval.2 | ||
| 3 | oveq2 | ||
| 4 | id | ||
| 5 | 1 | fvexi | |
| 6 | 5 5 | xpex | |
| 7 | 4 6 | eqeltrrdi | |
| 8 | uniexb | ||
| 9 | 7 8 | sylibr | |
| 10 | eqid | ||
| 11 | 10 | restid | |
| 12 | 9 11 | syl | |
| 13 | 3 12 | eqtr2d | |
| 14 | 1 2 | ussval | |
| 15 | 13 14 | eqtrdi |