This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotaeqimp.i | |- I = ( iota_ a e. V X = A ) |
|
| riotaeqimp.j | |- J = ( iota_ a e. V Y = A ) |
||
| riotaeqimp.x | |- ( ph -> E! a e. V X = A ) |
||
| riotaeqimp.y | |- ( ph -> E! a e. V Y = A ) |
||
| Assertion | riotaeqimp | |- ( ( ph /\ I = J ) -> X = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqimp.i | |- I = ( iota_ a e. V X = A ) |
|
| 2 | riotaeqimp.j | |- J = ( iota_ a e. V Y = A ) |
|
| 3 | riotaeqimp.x | |- ( ph -> E! a e. V X = A ) |
|
| 4 | riotaeqimp.y | |- ( ph -> E! a e. V Y = A ) |
|
| 5 | 2 | eqcomi | |- ( iota_ a e. V Y = A ) = J |
| 6 | 5 | eqeq2i | |- ( I = ( iota_ a e. V Y = A ) <-> I = J ) |
| 7 | 6 | a1i | |- ( ph -> ( I = ( iota_ a e. V Y = A ) <-> I = J ) ) |
| 8 | 7 | bicomd | |- ( ph -> ( I = J <-> I = ( iota_ a e. V Y = A ) ) ) |
| 9 | 8 | biimpa | |- ( ( ph /\ I = J ) -> I = ( iota_ a e. V Y = A ) ) |
| 10 | 1 | eqeq1i | |- ( I = J <-> ( iota_ a e. V X = A ) = J ) |
| 11 | riotacl | |- ( E! a e. V Y = A -> ( iota_ a e. V Y = A ) e. V ) |
|
| 12 | 4 11 | syl | |- ( ph -> ( iota_ a e. V Y = A ) e. V ) |
| 13 | 2 12 | eqeltrid | |- ( ph -> J e. V ) |
| 14 | nfv | |- F/ a J e. V |
|
| 15 | nfcvd | |- ( J e. V -> F/_ a J ) |
|
| 16 | nfcvd | |- ( J e. V -> F/_ a X ) |
|
| 17 | 15 | nfcsb1d | |- ( J e. V -> F/_ a [_ J / a ]_ A ) |
| 18 | 16 17 | nfeqd | |- ( J e. V -> F/ a X = [_ J / a ]_ A ) |
| 19 | id | |- ( J e. V -> J e. V ) |
|
| 20 | csbeq1a | |- ( a = J -> A = [_ J / a ]_ A ) |
|
| 21 | 20 | eqeq2d | |- ( a = J -> ( X = A <-> X = [_ J / a ]_ A ) ) |
| 22 | 21 | adantl | |- ( ( J e. V /\ a = J ) -> ( X = A <-> X = [_ J / a ]_ A ) ) |
| 23 | 14 15 18 19 22 | riota2df | |- ( ( J e. V /\ E! a e. V X = A ) -> ( X = [_ J / a ]_ A <-> ( iota_ a e. V X = A ) = J ) ) |
| 24 | 23 | bicomd | |- ( ( J e. V /\ E! a e. V X = A ) -> ( ( iota_ a e. V X = A ) = J <-> X = [_ J / a ]_ A ) ) |
| 25 | 13 3 24 | syl2anc | |- ( ph -> ( ( iota_ a e. V X = A ) = J <-> X = [_ J / a ]_ A ) ) |
| 26 | 10 25 | bitrid | |- ( ph -> ( I = J <-> X = [_ J / a ]_ A ) ) |
| 27 | 26 | biimpa | |- ( ( ph /\ I = J ) -> X = [_ J / a ]_ A ) |
| 28 | riotacl | |- ( E! a e. V X = A -> ( iota_ a e. V X = A ) e. V ) |
|
| 29 | 3 28 | syl | |- ( ph -> ( iota_ a e. V X = A ) e. V ) |
| 30 | 1 29 | eqeltrid | |- ( ph -> I e. V ) |
| 31 | nfv | |- F/ a I e. V |
|
| 32 | nfcvd | |- ( I e. V -> F/_ a I ) |
|
| 33 | nfcvd | |- ( I e. V -> F/_ a Y ) |
|
| 34 | 32 | nfcsb1d | |- ( I e. V -> F/_ a [_ I / a ]_ A ) |
| 35 | 33 34 | nfeqd | |- ( I e. V -> F/ a Y = [_ I / a ]_ A ) |
| 36 | id | |- ( I e. V -> I e. V ) |
|
| 37 | csbeq1a | |- ( a = I -> A = [_ I / a ]_ A ) |
|
| 38 | 37 | eqeq2d | |- ( a = I -> ( Y = A <-> Y = [_ I / a ]_ A ) ) |
| 39 | 38 | adantl | |- ( ( I e. V /\ a = I ) -> ( Y = A <-> Y = [_ I / a ]_ A ) ) |
| 40 | 31 32 35 36 39 | riota2df | |- ( ( I e. V /\ E! a e. V Y = A ) -> ( Y = [_ I / a ]_ A <-> ( iota_ a e. V Y = A ) = I ) ) |
| 41 | 30 4 40 | syl2anc | |- ( ph -> ( Y = [_ I / a ]_ A <-> ( iota_ a e. V Y = A ) = I ) ) |
| 42 | eqcom | |- ( ( iota_ a e. V Y = A ) = I <-> I = ( iota_ a e. V Y = A ) ) |
|
| 43 | 41 42 | bitrdi | |- ( ph -> ( Y = [_ I / a ]_ A <-> I = ( iota_ a e. V Y = A ) ) ) |
| 44 | 43 | adantr | |- ( ( ph /\ I = J ) -> ( Y = [_ I / a ]_ A <-> I = ( iota_ a e. V Y = A ) ) ) |
| 45 | csbeq1 | |- ( J = I -> [_ J / a ]_ A = [_ I / a ]_ A ) |
|
| 46 | 45 | eqcoms | |- ( I = J -> [_ J / a ]_ A = [_ I / a ]_ A ) |
| 47 | eqeq12 | |- ( ( X = [_ J / a ]_ A /\ Y = [_ I / a ]_ A ) -> ( X = Y <-> [_ J / a ]_ A = [_ I / a ]_ A ) ) |
|
| 48 | 47 | ancoms | |- ( ( Y = [_ I / a ]_ A /\ X = [_ J / a ]_ A ) -> ( X = Y <-> [_ J / a ]_ A = [_ I / a ]_ A ) ) |
| 49 | 46 48 | syl5ibrcom | |- ( I = J -> ( ( Y = [_ I / a ]_ A /\ X = [_ J / a ]_ A ) -> X = Y ) ) |
| 50 | 49 | expd | |- ( I = J -> ( Y = [_ I / a ]_ A -> ( X = [_ J / a ]_ A -> X = Y ) ) ) |
| 51 | 50 | adantl | |- ( ( ph /\ I = J ) -> ( Y = [_ I / a ]_ A -> ( X = [_ J / a ]_ A -> X = Y ) ) ) |
| 52 | 44 51 | sylbird | |- ( ( ph /\ I = J ) -> ( I = ( iota_ a e. V Y = A ) -> ( X = [_ J / a ]_ A -> X = Y ) ) ) |
| 53 | 9 27 52 | mp2d | |- ( ( ph /\ I = J ) -> X = Y ) |