This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uspgredg2v . (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 6-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgredg2v.v | |- V = ( Vtx ` G ) |
|
| uspgredg2v.e | |- E = ( Edg ` G ) |
||
| uspgredg2v.a | |- A = { e e. E | N e. e } |
||
| Assertion | uspgredg2vlem | |- ( ( G e. USPGraph /\ Y e. A ) -> ( iota_ z e. V Y = { N , z } ) e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgredg2v.v | |- V = ( Vtx ` G ) |
|
| 2 | uspgredg2v.e | |- E = ( Edg ` G ) |
|
| 3 | uspgredg2v.a | |- A = { e e. E | N e. e } |
|
| 4 | eleq2 | |- ( e = Y -> ( N e. e <-> N e. Y ) ) |
|
| 5 | 4 3 | elrab2 | |- ( Y e. A <-> ( Y e. E /\ N e. Y ) ) |
| 6 | simpl | |- ( ( G e. USPGraph /\ ( Y e. E /\ N e. Y ) ) -> G e. USPGraph ) |
|
| 7 | 2 | eleq2i | |- ( Y e. E <-> Y e. ( Edg ` G ) ) |
| 8 | 7 | biimpi | |- ( Y e. E -> Y e. ( Edg ` G ) ) |
| 9 | 8 | ad2antrl | |- ( ( G e. USPGraph /\ ( Y e. E /\ N e. Y ) ) -> Y e. ( Edg ` G ) ) |
| 10 | simprr | |- ( ( G e. USPGraph /\ ( Y e. E /\ N e. Y ) ) -> N e. Y ) |
|
| 11 | 6 9 10 | 3jca | |- ( ( G e. USPGraph /\ ( Y e. E /\ N e. Y ) ) -> ( G e. USPGraph /\ Y e. ( Edg ` G ) /\ N e. Y ) ) |
| 12 | uspgredg2vtxeu | |- ( ( G e. USPGraph /\ Y e. ( Edg ` G ) /\ N e. Y ) -> E! z e. ( Vtx ` G ) Y = { N , z } ) |
|
| 13 | reueq1 | |- ( V = ( Vtx ` G ) -> ( E! z e. V Y = { N , z } <-> E! z e. ( Vtx ` G ) Y = { N , z } ) ) |
|
| 14 | 1 13 | ax-mp | |- ( E! z e. V Y = { N , z } <-> E! z e. ( Vtx ` G ) Y = { N , z } ) |
| 15 | 12 14 | sylibr | |- ( ( G e. USPGraph /\ Y e. ( Edg ` G ) /\ N e. Y ) -> E! z e. V Y = { N , z } ) |
| 16 | riotacl | |- ( E! z e. V Y = { N , z } -> ( iota_ z e. V Y = { N , z } ) e. V ) |
|
| 17 | 11 15 16 | 3syl | |- ( ( G e. USPGraph /\ ( Y e. E /\ N e. Y ) ) -> ( iota_ z e. V Y = { N , z } ) e. V ) |
| 18 | 5 17 | sylan2b | |- ( ( G e. USPGraph /\ Y e. A ) -> ( iota_ z e. V Y = { N , z } ) e. V ) |