This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class/vertex is a neighbor of another class/vertex in a simple graph iff the vertices are endpoints of an edge. (Contributed by Alexander van der Vekens, 11-Oct-2017) (Revised by AV, 26-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbusgreledg.e | |- E = ( Edg ` G ) |
|
| Assertion | nbusgreledg | |- ( G e. USGraph -> ( N e. ( G NeighbVtx K ) <-> { N , K } e. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgreledg.e | |- E = ( Edg ` G ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | 2 1 | nbusgr | |- ( G e. USGraph -> ( G NeighbVtx K ) = { n e. ( Vtx ` G ) | { K , n } e. E } ) |
| 4 | 3 | eleq2d | |- ( G e. USGraph -> ( N e. ( G NeighbVtx K ) <-> N e. { n e. ( Vtx ` G ) | { K , n } e. E } ) ) |
| 5 | 1 2 | usgrpredgv | |- ( ( G e. USGraph /\ { K , N } e. E ) -> ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) |
| 6 | 5 | simprd | |- ( ( G e. USGraph /\ { K , N } e. E ) -> N e. ( Vtx ` G ) ) |
| 7 | 6 | ex | |- ( G e. USGraph -> ( { K , N } e. E -> N e. ( Vtx ` G ) ) ) |
| 8 | 7 | pm4.71rd | |- ( G e. USGraph -> ( { K , N } e. E <-> ( N e. ( Vtx ` G ) /\ { K , N } e. E ) ) ) |
| 9 | prcom | |- { N , K } = { K , N } |
|
| 10 | 9 | eleq1i | |- ( { N , K } e. E <-> { K , N } e. E ) |
| 11 | 10 | a1i | |- ( G e. USGraph -> ( { N , K } e. E <-> { K , N } e. E ) ) |
| 12 | preq2 | |- ( n = N -> { K , n } = { K , N } ) |
|
| 13 | 12 | eleq1d | |- ( n = N -> ( { K , n } e. E <-> { K , N } e. E ) ) |
| 14 | 13 | elrab | |- ( N e. { n e. ( Vtx ` G ) | { K , n } e. E } <-> ( N e. ( Vtx ` G ) /\ { K , N } e. E ) ) |
| 15 | 14 | a1i | |- ( G e. USGraph -> ( N e. { n e. ( Vtx ` G ) | { K , n } e. E } <-> ( N e. ( Vtx ` G ) /\ { K , N } e. E ) ) ) |
| 16 | 8 11 15 | 3bitr4rd | |- ( G e. USGraph -> ( N e. { n e. ( Vtx ` G ) | { K , n } e. E } <-> { N , K } e. E ) ) |
| 17 | 4 16 | bitrd | |- ( G e. USGraph -> ( N e. ( G NeighbVtx K ) <-> { N , K } e. E ) ) |