This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each neighbor of a vertex there is exactly one edge between the vertex and its neighbor in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017) (Revised by AV, 27-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbusgredgeu.e | |- E = ( Edg ` G ) |
|
| Assertion | nbusgredgeu | |- ( ( G e. USGraph /\ M e. ( G NeighbVtx N ) ) -> E! e e. E e = { M , N } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgredgeu.e | |- E = ( Edg ` G ) |
|
| 2 | 1 | nbusgreledg | |- ( G e. USGraph -> ( M e. ( G NeighbVtx N ) <-> { M , N } e. E ) ) |
| 3 | 2 | biimpa | |- ( ( G e. USGraph /\ M e. ( G NeighbVtx N ) ) -> { M , N } e. E ) |
| 4 | eqeq1 | |- ( e = { M , N } -> ( e = { M , N } <-> { M , N } = { M , N } ) ) |
|
| 5 | 4 | adantl | |- ( ( ( G e. USGraph /\ M e. ( G NeighbVtx N ) ) /\ e = { M , N } ) -> ( e = { M , N } <-> { M , N } = { M , N } ) ) |
| 6 | eqidd | |- ( ( G e. USGraph /\ M e. ( G NeighbVtx N ) ) -> { M , N } = { M , N } ) |
|
| 7 | 3 5 6 | rspcedvd | |- ( ( G e. USGraph /\ M e. ( G NeighbVtx N ) ) -> E. e e. E e = { M , N } ) |
| 8 | rmoeq | |- E* e e. E e = { M , N } |
|
| 9 | reu5 | |- ( E! e e. E e = { M , N } <-> ( E. e e. E e = { M , N } /\ E* e e. E e = { M , N } ) ) |
|
| 10 | 7 8 9 | sylanblrc | |- ( ( G e. USGraph /\ M e. ( G NeighbVtx N ) ) -> E! e e. E e = { M , N } ) |