This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The graphs H and G are not isomorphic ( H contains a triangle, see usgrexmpl1tri , whereas G does not, see usgrexmpl2trifr . (Contributed by AV, 10-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrexmpl2.v | ⊢ 𝑉 = ( 0 ... 5 ) | |
| usgrexmpl2.e | ⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } ”〉 | ||
| usgrexmpl2.g | ⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 | ||
| usgrexmpl1.k | ⊢ 𝐾 = 〈“ { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } ”〉 | ||
| usgrexmpl1.h | ⊢ 𝐻 = 〈 𝑉 , 𝐾 〉 | ||
| Assertion | usgrexmpl12ngric | ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl2.v | ⊢ 𝑉 = ( 0 ... 5 ) | |
| 2 | usgrexmpl2.e | ⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } ”〉 | |
| 3 | usgrexmpl2.g | ⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 | |
| 4 | usgrexmpl1.k | ⊢ 𝐾 = 〈“ { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } ”〉 | |
| 5 | usgrexmpl1.h | ⊢ 𝐻 = 〈 𝑉 , 𝐾 〉 | |
| 6 | 1 2 3 | usgrexmpl2 | ⊢ 𝐺 ∈ USGraph |
| 7 | usgruhgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) | |
| 8 | 6 7 | ax-mp | ⊢ 𝐺 ∈ UHGraph |
| 9 | gricsym | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ≃𝑔𝑟 𝐻 → 𝐻 ≃𝑔𝑟 𝐺 ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( 𝐺 ≃𝑔𝑟 𝐻 → 𝐻 ≃𝑔𝑟 𝐺 ) |
| 11 | 1 4 5 | usgrexmpl1tri | ⊢ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) |
| 12 | brgric | ⊢ ( 𝐻 ≃𝑔𝑟 𝐺 ↔ ( 𝐻 GraphIso 𝐺 ) ≠ ∅ ) | |
| 13 | n0 | ⊢ ( ( 𝐻 GraphIso 𝐺 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ) | |
| 14 | 12 13 | bitri | ⊢ ( 𝐻 ≃𝑔𝑟 𝐺 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ) |
| 15 | 1 2 3 | usgrexmpl2trifr | ⊢ ¬ ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) |
| 16 | 1 4 5 | usgrexmpl1 | ⊢ 𝐻 ∈ USGraph |
| 17 | usgruhgr | ⊢ ( 𝐻 ∈ USGraph → 𝐻 ∈ UHGraph ) | |
| 18 | 16 17 | ax-mp | ⊢ 𝐻 ∈ UHGraph |
| 19 | 18 | a1i | ⊢ ( ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → 𝐻 ∈ UHGraph ) |
| 20 | 8 | a1i | ⊢ ( ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → 𝐺 ∈ UHGraph ) |
| 21 | simpl | ⊢ ( ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ) | |
| 22 | simpr | ⊢ ( ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) | |
| 23 | 19 20 21 22 | grimgrtri | ⊢ ( ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) ∧ { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) ) → ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) |
| 24 | 23 | ex | ⊢ ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
| 25 | alnex | ⊢ ( ∀ 𝑡 ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ¬ ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ) | |
| 26 | vex | ⊢ 𝑓 ∈ V | |
| 27 | 26 | imaex | ⊢ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ V |
| 28 | id | ⊢ ( ( 𝑓 “ { 0 , 1 , 2 } ) ∈ V → ( 𝑓 “ { 0 , 1 , 2 } ) ∈ V ) | |
| 29 | eleq1 | ⊢ ( 𝑡 = ( 𝑓 “ { 0 , 1 , 2 } ) → ( 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) ) | |
| 30 | 29 | notbid | ⊢ ( 𝑡 = ( 𝑓 “ { 0 , 1 , 2 } ) → ( ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ¬ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( ( 𝑓 “ { 0 , 1 , 2 } ) ∈ V ∧ 𝑡 = ( 𝑓 “ { 0 , 1 , 2 } ) ) → ( ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) ↔ ¬ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
| 32 | 28 31 | spcdv | ⊢ ( ( 𝑓 “ { 0 , 1 , 2 } ) ∈ V → ( ∀ 𝑡 ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) → ¬ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) ) |
| 33 | 27 32 | ax-mp | ⊢ ( ∀ 𝑡 ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) → ¬ ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) ) |
| 34 | 33 | pm2.21d | ⊢ ( ∀ 𝑡 ¬ 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) → ( ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
| 35 | 25 34 | sylbir | ⊢ ( ¬ ∃ 𝑡 𝑡 ∈ ( GrTriangles ‘ 𝐺 ) → ( ( 𝑓 “ { 0 , 1 , 2 } ) ∈ ( GrTriangles ‘ 𝐺 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
| 36 | 15 24 35 | mpsylsyld | ⊢ ( 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
| 37 | 36 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐻 GraphIso 𝐺 ) → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
| 38 | 14 37 | sylbi | ⊢ ( 𝐻 ≃𝑔𝑟 𝐺 → ( { 0 , 1 , 2 } ∈ ( GrTriangles ‘ 𝐻 ) → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) ) |
| 39 | 10 11 38 | mpisyl | ⊢ ( 𝐺 ≃𝑔𝑟 𝐻 → ¬ 𝐺 ≃𝑔𝑟 𝐻 ) |
| 40 | 39 | pm2.01i | ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 |