This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The graphs H and G are not locally isomorphic ( H contains a triangle, see usgrexmpl1tri , whereas G does not, see usgrexmpl2trifr . (Contributed by AV, 24-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrexmpl2.v | |- V = ( 0 ... 5 ) |
|
| usgrexmpl2.e | |- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } "> |
||
| usgrexmpl2.g | |- G = <. V , E >. |
||
| usgrexmpl1.k | |- K = <" { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } "> |
||
| usgrexmpl1.h | |- H = <. V , K >. |
||
| Assertion | usgrexmpl12ngrlic | |- -. G ~=lgr H |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl2.v | |- V = ( 0 ... 5 ) |
|
| 2 | usgrexmpl2.e | |- E = <" { 0 , 1 } { 1 , 2 } { 2 , 3 } { 3 , 4 } { 4 , 5 } { 0 , 3 } { 0 , 5 } "> |
|
| 3 | usgrexmpl2.g | |- G = <. V , E >. |
|
| 4 | usgrexmpl1.k | |- K = <" { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } "> |
|
| 5 | usgrexmpl1.h | |- H = <. V , K >. |
|
| 6 | 1 2 3 | usgrexmpl2 | |- G e. USGraph |
| 7 | usgruhgr | |- ( G e. USGraph -> G e. UHGraph ) |
|
| 8 | grlicsym | |- ( G e. UHGraph -> ( G ~=lgr H -> H ~=lgr G ) ) |
|
| 9 | 6 7 8 | mp2b | |- ( G ~=lgr H -> H ~=lgr G ) |
| 10 | 1 4 5 | usgrexmpl1tri | |- { 0 , 1 , 2 } e. ( GrTriangles ` H ) |
| 11 | brgrlic | |- ( H ~=lgr G <-> ( H GraphLocIso G ) =/= (/) ) |
|
| 12 | n0 | |- ( ( H GraphLocIso G ) =/= (/) <-> E. f f e. ( H GraphLocIso G ) ) |
|
| 13 | 11 12 | bitri | |- ( H ~=lgr G <-> E. f f e. ( H GraphLocIso G ) ) |
| 14 | 1 2 3 | usgrexmpl2trifr | |- -. E. t t e. ( GrTriangles ` G ) |
| 15 | 1 4 5 | usgrexmpl1 | |- H e. USGraph |
| 16 | usgruspgr | |- ( H e. USGraph -> H e. USPGraph ) |
|
| 17 | 15 16 | mp1i | |- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> H e. USPGraph ) |
| 18 | usgruspgr | |- ( G e. USGraph -> G e. USPGraph ) |
|
| 19 | 6 18 | mp1i | |- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> G e. USPGraph ) |
| 20 | simpl | |- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> f e. ( H GraphLocIso G ) ) |
|
| 21 | simpr | |- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) |
|
| 22 | 17 19 20 21 | grlimgrtri | |- ( ( f e. ( H GraphLocIso G ) /\ { 0 , 1 , 2 } e. ( GrTriangles ` H ) ) -> E. t t e. ( GrTriangles ` G ) ) |
| 23 | 22 | ex | |- ( f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> E. t t e. ( GrTriangles ` G ) ) ) |
| 24 | pm2.21 | |- ( -. E. t t e. ( GrTriangles ` G ) -> ( E. t t e. ( GrTriangles ` G ) -> -. G ~=lgr H ) ) |
|
| 25 | 14 23 24 | mpsylsyld | |- ( f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) |
| 26 | 25 | exlimiv | |- ( E. f f e. ( H GraphLocIso G ) -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) |
| 27 | 13 26 | sylbi | |- ( H ~=lgr G -> ( { 0 , 1 , 2 } e. ( GrTriangles ` H ) -> -. G ~=lgr H ) ) |
| 28 | 9 10 27 | mpisyl | |- ( G ~=lgr H -> -. G ~=lgr H ) |
| 29 | 28 | pm2.01i | |- -. G ~=lgr H |