This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, any walk of length 2 between two different vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 27-Jan-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr2wlkspth | |- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> ( F ( A ( WalksOn ` G ) B ) P <-> F ( A ( SPathsOn ` G ) B ) P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl31 | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( Walks ` G ) P ) |
|
| 2 | simp2 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` 0 ) = A ) |
|
| 3 | simp3 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = B ) |
|
| 4 | 2 3 | neeq12d | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> A =/= B ) ) |
| 5 | 4 | bicomd | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 6 | 5 | 3anbi3d | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) <-> ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
| 7 | usgr2wlkspthlem1 | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' F ) |
|
| 8 | 7 | ex | |- ( F ( Walks ` G ) P -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' F ) ) |
| 9 | 8 | 3ad2ant1 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' F ) ) |
| 10 | 6 9 | sylbid | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' F ) ) |
| 11 | 10 | 3ad2ant3 | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' F ) ) |
| 12 | 11 | imp | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> Fun `' F ) |
| 13 | istrl | |- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
|
| 14 | 1 12 13 | sylanbrc | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( Trails ` G ) P ) |
| 15 | usgr2wlkspthlem2 | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' P ) |
|
| 16 | 15 | ex | |- ( F ( Walks ` G ) P -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' P ) ) |
| 17 | 16 | 3ad2ant1 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' P ) ) |
| 18 | 6 17 | sylbid | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' P ) ) |
| 19 | 18 | 3ad2ant3 | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> Fun `' P ) ) |
| 20 | 19 | imp | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> Fun `' P ) |
| 21 | isspth | |- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
|
| 22 | 14 20 21 | sylanbrc | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( SPaths ` G ) P ) |
| 23 | 3simpc | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
|
| 24 | 23 | 3ad2ant3 | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
| 25 | 24 | adantr | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
| 26 | 3anass | |- ( ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( F ( SPaths ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
|
| 27 | 22 25 26 | sylanbrc | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
| 28 | 3simpa | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
|
| 29 | 28 | adantr | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 30 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 31 | 30 | isspthonpth | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 32 | 29 31 | syl | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 33 | 27 32 | mpbird | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) ) -> F ( A ( SPathsOn ` G ) B ) P ) |
| 34 | 33 | ex | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> F ( A ( SPathsOn ` G ) B ) P ) ) |
| 35 | 30 | wlkonprop | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 36 | 3simpc | |- ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
|
| 37 | 36 | 3anim1i | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 38 | 35 37 | syl | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 39 | 34 38 | syl11 | |- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> ( F ( A ( WalksOn ` G ) B ) P -> F ( A ( SPathsOn ` G ) B ) P ) ) |
| 40 | spthonpthon | |- ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( PathsOn ` G ) B ) P ) |
|
| 41 | pthontrlon | |- ( F ( A ( PathsOn ` G ) B ) P -> F ( A ( TrailsOn ` G ) B ) P ) |
|
| 42 | trlsonwlkon | |- ( F ( A ( TrailsOn ` G ) B ) P -> F ( A ( WalksOn ` G ) B ) P ) |
|
| 43 | 40 41 42 | 3syl | |- ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( WalksOn ` G ) B ) P ) |
| 44 | 39 43 | impbid1 | |- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ A =/= B ) -> ( F ( A ( WalksOn ` G ) B ) P <-> F ( A ( SPathsOn ` G ) B ) P ) ) |