This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple path between two vertices is a path between these vertices. (Contributed by AV, 24-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spthonpthon | |- ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( PathsOn ` G ) B ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | 1 | spthonprop | |- ( F ( A ( SPathsOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) ) |
| 3 | 3simpc | |- ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
|
| 4 | 3 | 3anim1i | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) ) |
| 5 | spthispth | |- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |
|
| 6 | 5 | anim2i | |- ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) -> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) |
| 7 | 6 | 3ad2ant3 | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) |
| 8 | 1 | ispthson | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( PathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) |
| 9 | 8 | 3adant3 | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> ( F ( A ( PathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( Paths ` G ) P ) ) ) |
| 10 | 7 9 | mpbird | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) -> F ( A ( PathsOn ` G ) B ) P ) |
| 11 | 2 4 10 | 3syl | |- ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( PathsOn ` G ) B ) P ) |