This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for usgr2wlkspth . (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 26-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr2wlkspthlem1 | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> G e. USGraph ) |
|
| 2 | 1 | anim2i | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( F ( Walks ` G ) P /\ G e. USGraph ) ) |
| 3 | 2 | ancomd | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( G e. USGraph /\ F ( Walks ` G ) P ) ) |
| 4 | 3simpc | |- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
|
| 5 | 4 | adantl | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 6 | usgr2wlkneq | |- ( ( ( G e. USGraph /\ F ( Walks ` G ) P ) /\ ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
|
| 7 | 3 5 6 | syl2anc | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 8 | fvexd | |- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( F ` 0 ) e. _V ) |
|
| 9 | fvexd | |- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( F ` 1 ) e. _V ) |
|
| 10 | simpr | |- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( F ` 0 ) =/= ( F ` 1 ) ) |
|
| 11 | 8 9 10 | 3jca | |- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( F ` 0 ) e. _V /\ ( F ` 1 ) e. _V /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 12 | funcnvs2 | |- ( ( ( F ` 0 ) e. _V /\ ( F ` 1 ) e. _V /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> Fun `' <" ( F ` 0 ) ( F ` 1 ) "> ) |
|
| 13 | 7 11 12 | 3syl | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' <" ( F ` 0 ) ( F ` 1 ) "> ) |
| 14 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 15 | 14 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
| 16 | simp2 | |- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( # ` F ) = 2 ) |
|
| 17 | wrdlen2s2 | |- ( ( F e. Word dom ( iEdg ` G ) /\ ( # ` F ) = 2 ) -> F = <" ( F ` 0 ) ( F ` 1 ) "> ) |
|
| 18 | 15 16 17 | syl2an | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> F = <" ( F ` 0 ) ( F ` 1 ) "> ) |
| 19 | 18 | cnveqd | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> `' F = `' <" ( F ` 0 ) ( F ` 1 ) "> ) |
| 20 | 19 | funeqd | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( Fun `' F <-> Fun `' <" ( F ` 0 ) ( F ` 1 ) "> ) ) |
| 21 | 13 20 | mpbird | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' F ) |