This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for usgr2wlkspth . (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 27-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr2wlkspthlem2 | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> G e. USGraph ) |
|
| 2 | 1 | anim2i | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( F ( Walks ` G ) P /\ G e. USGraph ) ) |
| 3 | 2 | ancomd | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( G e. USGraph /\ F ( Walks ` G ) P ) ) |
| 4 | 3simpc | |- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
|
| 5 | 4 | adantl | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 6 | usgr2wlkneq | |- ( ( ( G e. USGraph /\ F ( Walks ` G ) P ) /\ ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
|
| 7 | 3 5 6 | syl2anc | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 8 | simpl | |- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) |
|
| 9 | fvex | |- ( P ` 0 ) e. _V |
|
| 10 | fvex | |- ( P ` 1 ) e. _V |
|
| 11 | fvex | |- ( P ` 2 ) e. _V |
|
| 12 | 9 10 11 | 3pm3.2i | |- ( ( P ` 0 ) e. _V /\ ( P ` 1 ) e. _V /\ ( P ` 2 ) e. _V ) |
| 13 | 8 12 | jctil | |- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( ( P ` 0 ) e. _V /\ ( P ` 1 ) e. _V /\ ( P ` 2 ) e. _V ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) ) |
| 14 | funcnvs3 | |- ( ( ( ( P ` 0 ) e. _V /\ ( P ` 1 ) e. _V /\ ( P ` 2 ) e. _V ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> Fun `' <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) |
|
| 15 | 7 13 14 | 3syl | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) |
| 16 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 17 | 16 | wlkpwrd | |- ( F ( Walks ` G ) P -> P e. Word ( Vtx ` G ) ) |
| 18 | wlklenvp1 | |- ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
|
| 19 | oveq1 | |- ( ( # ` F ) = 2 -> ( ( # ` F ) + 1 ) = ( 2 + 1 ) ) |
|
| 20 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 21 | 19 20 | eqtrdi | |- ( ( # ` F ) = 2 -> ( ( # ` F ) + 1 ) = 3 ) |
| 22 | 21 | 3ad2ant2 | |- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( # ` F ) + 1 ) = 3 ) |
| 23 | 18 22 | sylan9eq | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( # ` P ) = 3 ) |
| 24 | wrdlen3s3 | |- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = 3 ) -> P = <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) |
|
| 25 | 17 23 24 | syl2an2r | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> P = <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) |
| 26 | 25 | cnveqd | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> `' P = `' <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) |
| 27 | 26 | funeqd | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( Fun `' P <-> Fun `' <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) ) |
| 28 | 15 27 | mpbird | |- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' P ) |