This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of functions is a simple path between two given vertices iff it is a simple path starting and ending at the two vertices. (Contributed by Alexander van der Vekens, 9-Mar-2018) (Revised by AV, 17-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isspthonpth.v | |- V = ( Vtx ` G ) |
|
| Assertion | isspthonpth | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isspthonpth.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | isspthson | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) ) |
| 3 | 1 | istrlson | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) |
| 4 | 3 | adantr | |- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) |
| 5 | spthispth | |- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |
|
| 6 | pthistrl | |- ( F ( Paths ` G ) P -> F ( Trails ` G ) P ) |
|
| 7 | 5 6 | syl | |- ( F ( SPaths ` G ) P -> F ( Trails ` G ) P ) |
| 8 | 7 | adantl | |- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> F ( Trails ` G ) P ) |
| 9 | 8 | biantrud | |- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) |
| 10 | spthiswlk | |- ( F ( SPaths ` G ) P -> F ( Walks ` G ) P ) |
|
| 11 | 10 | adantl | |- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> F ( Walks ` G ) P ) |
| 12 | 1 | iswlkon | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 13 | 3anass | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( F ( Walks ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
|
| 14 | 12 13 | bitrdi | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) ) |
| 15 | 14 | adantr | |- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) ) |
| 16 | 11 15 | mpbirand | |- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 17 | 4 9 16 | 3bitr2d | |- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 18 | 17 | ex | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( SPaths ` G ) P -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) ) |
| 19 | 18 | pm5.32rd | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) <-> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ F ( SPaths ` G ) P ) ) ) |
| 20 | 3anass | |- ( ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( F ( SPaths ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
|
| 21 | ancom | |- ( ( F ( SPaths ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) <-> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ F ( SPaths ` G ) P ) ) |
|
| 22 | 20 21 | bitr2i | |- ( ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ F ( SPaths ` G ) P ) <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
| 23 | 19 22 | bitrdi | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 24 | 2 23 | bitrd | |- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |