This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr1v | |- ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr1vr | |- ( ( A e. _V /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |
|
| 2 | 1 | adantrl | |- ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |
| 3 | simplrl | |- ( ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) /\ ( iEdg ` G ) = (/) ) -> G e. W ) |
|
| 4 | simpr | |- ( ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) /\ ( iEdg ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
|
| 5 | 3 4 | usgr0e | |- ( ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) |
| 6 | 5 | ex | |- ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( ( iEdg ` G ) = (/) -> G e. USGraph ) ) |
| 7 | 2 6 | impbid | |- ( ( A e. _V /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |
| 8 | 7 | ex | |- ( A e. _V -> ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) ) |
| 9 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 10 | simpl | |- ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> G e. W ) |
|
| 11 | simprr | |- ( ( { A } = (/) /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( Vtx ` G ) = { A } ) |
|
| 12 | simpl | |- ( ( { A } = (/) /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> { A } = (/) ) |
|
| 13 | 11 12 | eqtrd | |- ( ( { A } = (/) /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( Vtx ` G ) = (/) ) |
| 14 | usgr0vb | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |
|
| 15 | 10 13 14 | syl2an2 | |- ( ( { A } = (/) /\ ( G e. W /\ ( Vtx ` G ) = { A } ) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |
| 16 | 15 | ex | |- ( { A } = (/) -> ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) ) |
| 17 | 9 16 | sylbi | |- ( -. A e. _V -> ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) ) |
| 18 | 8 17 | pm2.61i | |- ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |