This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph is a loop-free simple pseudograph. (Contributed by AV, 27-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrislfuspgr.v | |- V = ( Vtx ` G ) |
|
| usgrislfuspgr.i | |- I = ( iEdg ` G ) |
||
| Assertion | usgrislfuspgr | |- ( G e. USGraph <-> ( G e. USPGraph /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrislfuspgr.v | |- V = ( Vtx ` G ) |
|
| 2 | usgrislfuspgr.i | |- I = ( iEdg ` G ) |
|
| 3 | usgruspgr | |- ( G e. USGraph -> G e. USPGraph ) |
|
| 4 | 1 2 | usgrfs | |- ( G e. USGraph -> I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
| 5 | f1f | |- ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> I : dom I --> { x e. ~P V | ( # ` x ) = 2 } ) |
|
| 6 | 2re | |- 2 e. RR |
|
| 7 | 6 | leidi | |- 2 <_ 2 |
| 8 | 7 | a1i | |- ( ( # ` x ) = 2 -> 2 <_ 2 ) |
| 9 | breq2 | |- ( ( # ` x ) = 2 -> ( 2 <_ ( # ` x ) <-> 2 <_ 2 ) ) |
|
| 10 | 8 9 | mpbird | |- ( ( # ` x ) = 2 -> 2 <_ ( # ` x ) ) |
| 11 | 10 | a1i | |- ( x e. ~P V -> ( ( # ` x ) = 2 -> 2 <_ ( # ` x ) ) ) |
| 12 | 11 | ss2rabi | |- { x e. ~P V | ( # ` x ) = 2 } C_ { x e. ~P V | 2 <_ ( # ` x ) } |
| 13 | 12 | a1i | |- ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> { x e. ~P V | ( # ` x ) = 2 } C_ { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 14 | 5 13 | fssd | |- ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 15 | 4 14 | syl | |- ( G e. USGraph -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 16 | 3 15 | jca | |- ( G e. USGraph -> ( G e. USPGraph /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 17 | 1 2 | uspgrf | |- ( G e. USPGraph -> I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 18 | df-f1 | |- ( I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } /\ Fun `' I ) ) |
|
| 19 | fin | |- ( I : dom I --> ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } i^i { x e. ~P V | 2 <_ ( # ` x ) } ) <-> ( I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
|
| 20 | umgrislfupgrlem | |- ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } i^i { x e. ~P V | 2 <_ ( # ` x ) } ) = { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } |
|
| 21 | feq3 | |- ( ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } i^i { x e. ~P V | 2 <_ ( # ` x ) } ) = { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } -> ( I : dom I --> ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } i^i { x e. ~P V | 2 <_ ( # ` x ) } ) <-> I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) ) |
|
| 22 | 20 21 | ax-mp | |- ( I : dom I --> ( { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } i^i { x e. ~P V | 2 <_ ( # ` x ) } ) <-> I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
| 23 | 19 22 | sylbb1 | |- ( ( I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
| 24 | 23 | anim1i | |- ( ( ( I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ Fun `' I ) -> ( I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } /\ Fun `' I ) ) |
| 25 | df-f1 | |- ( I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } <-> ( I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } /\ Fun `' I ) ) |
|
| 26 | 24 25 | sylibr | |- ( ( ( I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ Fun `' I ) -> I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
| 27 | 26 | ex | |- ( ( I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> ( Fun `' I -> I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 28 | 27 | impancom | |- ( ( I : dom I --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } /\ Fun `' I ) -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 29 | 18 28 | sylbi | |- ( I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 30 | 29 | imp | |- ( ( I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
| 31 | 17 30 | sylan | |- ( ( G e. USPGraph /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) |
| 32 | 1 2 | isusgr | |- ( G e. USPGraph -> ( G e. USGraph <-> I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 33 | 32 | adantr | |- ( ( G e. USPGraph /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> ( G e. USGraph <-> I : dom I -1-1-> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 34 | 31 33 | mpbird | |- ( ( G e. USPGraph /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> G e. USGraph ) |
| 35 | 16 34 | impbii | |- ( G e. USGraph <-> ( G e. USPGraph /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |