This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr1v0edg | |- ( ( G e. W /\ ( Vtx ` G ) = { A } /\ Fun ( iEdg ` G ) ) -> ( G e. USGraph <-> ( Edg ` G ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr1v | |- ( ( G e. W /\ ( Vtx ` G ) = { A } ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( G e. W /\ ( Vtx ` G ) = { A } /\ Fun ( iEdg ` G ) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |
| 3 | funrel | |- ( Fun ( iEdg ` G ) -> Rel ( iEdg ` G ) ) |
|
| 4 | relrn0 | |- ( Rel ( iEdg ` G ) -> ( ( iEdg ` G ) = (/) <-> ran ( iEdg ` G ) = (/) ) ) |
|
| 5 | 3 4 | syl | |- ( Fun ( iEdg ` G ) -> ( ( iEdg ` G ) = (/) <-> ran ( iEdg ` G ) = (/) ) ) |
| 6 | 5 | 3ad2ant3 | |- ( ( G e. W /\ ( Vtx ` G ) = { A } /\ Fun ( iEdg ` G ) ) -> ( ( iEdg ` G ) = (/) <-> ran ( iEdg ` G ) = (/) ) ) |
| 7 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 8 | 7 | eqcomi | |- ran ( iEdg ` G ) = ( Edg ` G ) |
| 9 | 8 | eqeq1i | |- ( ran ( iEdg ` G ) = (/) <-> ( Edg ` G ) = (/) ) |
| 10 | 9 | a1i | |- ( ( G e. W /\ ( Vtx ` G ) = { A } /\ Fun ( iEdg ` G ) ) -> ( ran ( iEdg ` G ) = (/) <-> ( Edg ` G ) = (/) ) ) |
| 11 | 2 6 10 | 3bitrd | |- ( ( G e. W /\ ( Vtx ` G ) = { A } /\ Fun ( iEdg ` G ) ) -> ( G e. USGraph <-> ( Edg ` G ) = (/) ) ) |