This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The null graph, with no vertices, is a simple graph iff the edge function is empty. (Contributed by Alexander van der Vekens, 30-Sep-2017) (Revised by AV, 16-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr0vb | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruhgr | |- ( G e. USGraph -> G e. UHGraph ) |
|
| 2 | uhgr0vb | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph <-> ( iEdg ` G ) = (/) ) ) |
|
| 3 | 1 2 | imbitrid | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |
| 4 | simpl | |- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> G e. W ) |
|
| 5 | simpr | |- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
|
| 6 | 4 5 | usgr0e | |- ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> G e. USGraph ) |
| 7 | 6 | ex | |- ( G e. W -> ( ( iEdg ` G ) = (/) -> G e. USGraph ) ) |
| 8 | 7 | adantr | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( ( iEdg ` G ) = (/) -> G e. USGraph ) ) |
| 9 | 3 8 | impbid | |- ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. USGraph <-> ( iEdg ` G ) = (/) ) ) |