This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty graph, with vertices but no edges, is a simple graph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 16-Oct-2020) (Proof shortened by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgr0e.g | |- ( ph -> G e. W ) |
|
| usgr0e.e | |- ( ph -> ( iEdg ` G ) = (/) ) |
||
| Assertion | usgr0e | |- ( ph -> G e. USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr0e.g | |- ( ph -> G e. W ) |
|
| 2 | usgr0e.e | |- ( ph -> ( iEdg ` G ) = (/) ) |
|
| 3 | 2 | f10d | |- ( ph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) |
| 4 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 5 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 6 | 4 5 | isusgr | |- ( G e. W -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 7 | 1 6 | syl | |- ( ph -> ( G e. USGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 8 | 3 7 | mpbird | |- ( ph -> G e. USGraph ) |